Browse > Article
http://dx.doi.org/10.7585/kjps.2013.17.4.363

Insecticidal Activity and Effect on Biological Characteristic of 16 Insecticides Against Phthorimaea Operculella (Lepidoptera: Gelechiidae)  

An, Jeong-Jin (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Park, Jun-Won (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Kim, Ju-Il (Highland Agriculture Research Center, Rural Development Administration)
Kim, Hyun Kyung (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Koo, Hyun-Na (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Kim, Gil-Hah (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Publication Information
The Korean Journal of Pesticide Science / v.17, no.4, 2013 , pp. 363-370 More about this Journal
Abstract
Susceptibility of each developmental stage of Phthorimaea operculella (Lepidoptera: Gelechiidae) were investigated using 16 insecticides which are available in the market in Korea. For the eggs and pupae, only spinosad showed a 71.1% inhibition rate for egg hatchability and a 66.7% inhibition rate for emergence. For the 3rd instar larvae, the feeding toxicities were over 90% for fenitrothion ($LC_{50}$ 336.6 ppm), esfenvalerate ($LC_{50}$ 8.6 ppm), ethofenprox ($LC_{50}$ 35.7 ppm), and emamectin benzoate ($LC_{50}$ 0.05 ppm). Furthermore, the contact toxicities were over 90% for esfenvalerate ($LC_{50}$ 0.87 ppm), ethofenprox ($LC_{50}$ 16.5 ppm), emamectin benzoate ($LC_{50}$ 0.53 ppm), and spinosad ($LC_{50}$ 2.48 ppm) at the recommended concentrations. Deltamethrin and spinosad yielded 100% mortality for adult P. operculella 48 h after treatment. The adult female fecundity was inhibited by deltamethrin, esfenvalerate, emamectin benzoate, spinosad and dinotefuran, which were significantly different from the control. The adult longevities (7.3-8.3 days) were reduced by approximately 1-2 days compared with the control (9.3 day). The emamectin benzoate maintained 100% insecticidal activity 14 days after treatment and ethofenprox maintained over 90% activity 7 days after treatment.
Keywords
Phthorimaea operculella; Feeding toxicity; Contact toxicity; Systemic effect; Residual effect; $LC_{50}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, J. E., D. K. Seo and G. H. Kim (2006). Effect of antibiotics insecticides on survival and reproduction of the serpentine leafminer, Liriomyza trifoli. Korean J. Pestic. Sci. 10:329-334.   과학기술학회마을
2 Choe, K. R. and J. S. Park (1980) Distribution of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Korea. Korean J. Plant Prot. 19:103-107.   과학기술학회마을
3 Choe, K. R., C. G. Yoo, and Y. D. Chang (1980) Studies on the life history of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Korean J. Plant Prot. 19:97-101.   과학기술학회마을
4 Collantes, L. G., K. V. Ramana and F. H. Cisnerosa (1986) Effect of six synthetic pyrethroids on two populations of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Peru. Crop Prot. 5:355-357.   DOI
5 Dillard, H. E., T. J. Wicks and B. Philp (1993) A grower survey of diseases, invertebrate pests, and pesticide use on potatoes grown in South Australia. J. Exp. Agri. 33:653-661.   DOI   ScienceOn
6 Fenemore, P. G. (1988) Host-plant location and selection by adult potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae): A review. J. Insect. physiol. 3:175-177.
7 Galvan. T. L., R. L. Koch and W. D. Hutchison (2005) Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Biol. Control. 34:108-114.   DOI   ScienceOn
8 Gilboa, S., and H. Podoler (1994) Population dynamics of the potato tuber moth on processing tomatoes in Israel. Entomol. Exp. Appl. 72:197-206.   DOI   ScienceOn
9 Hanafi, A. (1999) Integrated pest management of potato tuber moth in field and storage. Potato Res. 42:373-380.   DOI   ScienceOn
10 Hu, J., P. Liang, X. Shi and X. Gao (2008) Effects of insecticides on the fluidity of mitochondrial membranes of the diamondback moth, Plutella xylostella, resistant and susceptible to avermectin. J. Insect Sci. 8:3.
11 Isaac, I., S. Kontsedalov and A. R. Horowitz (2002) Emamectin, a novel insecticide for controlling field crop pests. Pest Manag. Sci. 58:1091-1095   DOI   ScienceOn
12 KCPA. (2012) User's manual of pesticides. pp.446, 761. Korea Crop Protection Association.
13 Kim, K. H., Y. S. Lee, S. Y. Park, Y. S. Park and J. H. Kim (2001) Activity and control effects of insecticides to American sepentine leafminer, Liriomyza trifoli (Diptera: Agromyzidae). Korean J. Pestic. Sci. 5:46-54.   과학기술학회마을
14 Kim, S. K., G. Y. Lee, Y. H. Shin and G. H. Kim (2010). Chemical control effect against spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) nymphs and adults. Korean J. Pestic. Sci. 14:440-445.   과학기술학회마을
15 Kirkham, R. (1995) Potatoes. In: Coombs, B. (Ed.), Horticulture Australia. Khai Wah-Ferco Pty. Ltd., Singapore. pp. 250-256.
16 Raman, K. V. (1988a) Integrated insect pest management for potatoes in developing countries. C. I. P. Circular. 16:1-8.
17 SAS Institute (2009) SAS user's guide; statistics, version 9. 1ed. SAS Institute, Cary, NC.
18 Raman, K. V. (1988b) Control of potato tuber moth Phthorimaea operculella with sex pheromones in peru. Agric. Ecosyst. Environ. 21:85-99.   DOI   ScienceOn
19 Rothschild, G. H. L. (1986) The potato moth-an adaptable pest of short-term cropping systems, pp. 142-162. In R. L. Kitching (ed.), The ecology of exotic animals and plants. Jacaranda-Wiley, Queensland, Australia. pp. 144-462.
20 Saour, G. (2008) Effect of thiacloprid against the potato tuber moth phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). J. Pest Sci. 81:3-8.   DOI
21 Symington, C. A. (2003) Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae). Crop Prot. 22:513-519.   DOI   ScienceOn
22 Trumble, J. T., I. P. Ting and L. Bates (1985) Analysis of physiological growth and yeild responses of celery to Liriomyza trifolii. Entomol. Exp. Appl. 38:15-21.   DOI   ScienceOn
23 Voerman, S. and G. H. L. Rothschild (1978) Synthesis of the two components of the sex pheromone system of the potato tuberworm moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechidae) and field experience with them. J. Chem. Ecol. 4:531-542.   DOI