Browse > Article

Insecticidal Activity and Molecular Characteristics of Bacillus thuringiensis CAB530 Isolated from Anomala albopilosa (Rutelidae: Coleoptera)  

Beom, Jong-Il (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Seo, Mi-Ja (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
You, Joo (Sulloccha Research Institute)
Youn, Young-Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Yu, Yong-Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
The Korean Journal of Pesticide Science / v.15, no.2, 2011 , pp. 166-176 More about this Journal
Abstract
Bacillus thuringiensis CAB530 was isolated from dead Anomata albopilosa (Rutelidae: Coleoptera) and soil of green tea field, and confirmed its insecticidal activities. CAB530 isolate showed a high insecticidal activity against the beet armyworm among the many lepidopteran insects that are difficult to control. $LC_{50}$ value of CAB530 isolate against the second larva of Spodoptera exigua was $1.49{times}10^4$ spore concentration (cfu/$m{\ell}$). SDS-PAGE result of insecticidal toxin protein of CAB530 isolate showed a band at 130 kDa that is similar pattern with B. thuringiensis subsp. kurstaki that took insecticidal activity against S. exigua. Otherwise, the crystal protein of the CAB530 isolate was conformed at 65 kDa level after 30 minute of incubation in S. exigua midgut juice. Six crystal genes (cry1Aa, cry1Ab, cry1C, cry1D, cry1F and cry1I) were identified by PCR. It different from genes of B. thuringiensis subsp. kurstaki. Crystal shape and pattern of toxin protein was similar with B. thuringiensis subsp. kurstaki, however, insecticidal activity and PCR result of CAB530 isolate was similar with B. thuringiensis subsp. aizawai.
Keywords
Bacillus thuringiensis; Spodoptera exigua; Anomata albopilosa; Insecticidal toxin protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Porcar, M., J. Irarte, V. Cosmao Dumanoir, M. D. Ferrandis, M. M. Lecadet, J. Ferre and P. Caballero (1999) Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59). J. Appl. Microbiol. 8:640-648.
2 Rajagopal, R., S. Sivakumar, N. Agrawal, P. Malhotra, V. Bhatnaga and K. Raj (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. 277:46849-46851.   DOI
3 Sanchis, V., D. Lereclus, G. Menou, J. Chaufaux, S. Gou and M. M. Lecafet (1989) Mucleotide sequence and analysis of the n-terminal coding region of the Spodoptera-active $\delta$-endotoxin gene of Bacillus thuringiensis aizawai. Mol. Microbiol. 3:229-238.   DOI   ScienceOn
4 Schnepf, H. E., K. Tomczak, J. P. Ortega and H. R. Whiteley (1990) Specificity-determining regions of lepidopteran-specific insecticidal proteins produced by Bacillus thuringiensis. J. Biol. Chem. 265:20923-20930.
5 Schnepf, E., N. Crickmore, J. Van-Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler and D. H. Dean (1998) Bacillus thuringiensis and its insecticidal proteins. Microbiol, Mol. Biol. Rev. 62:774-806.
6 Shelton, A. M., J. L. Robertson, H. D. Tang, C. J. Perez, S. D. Eigenbrode, H. K. Preisler, W. T. Wilsey and R. J. Cooley (1993) Resistance of diamondback moth (Lepidoptera, Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ, Entomol. 86:697-705.   DOI
7 Tabashnik, B. E., N. L. Cushing, N. Inson and M. W. Johnson (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae). J. Econ. Entomol. 83:1671-1676.   DOI
8 Uribe, D., W. Martinez and N. J. Cero (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invert. Pathol. 82:119-127.   DOI   ScienceOn
9 Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji and Jr. L. A. Bulla (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem. 270:6783-6788.
10 Vilas-Boas, G. T and M. V. F. Lemos (2004) Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Can. J. Microbiol. 50:605-613.
11 Li, R., S. Dai, X. Li, X. Li, C. Luo, Z. Sheng and M. Sun (1990) Survey of Bacillus thuringiensis and Bacillus sphaericus from soils of four provinces of China and their principal biological properties. Acta Microbiol. Sin. 30:380-388.
12 Li, J., J. Carroll and D. J. Ellar (1991) Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at $2.5\AA$ resolution. Nature 353:815-821.   DOI   ScienceOn
13 Liburd, O. E., J. E. Funderburk and S. M. Olson (2000) Effect of biological and chemical insecticides on Spodoptera species (Lep, Noctuidae) and marketable yields of tomatoes. J. Appl. Entomol. 124:19-25.   DOI   ScienceOn
14 Loeza-Laraa, P. D., G. Benintendeb, J. Cozzib, A. Ochoa-Zarzosaa, V. M. Baizabal-Aguirrea, J. J. Valdez-Alarcona and J. E. Lopez-Mezaa (2005) The plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) replicates by the rolling-circle mechanism and encodes a novel insecticidal crystal protein-like gene. Plasmid. 25:229-240.
15 Lu, H., F. Rajamohan and D. H. Dean (1994) Identification of amino acid residues of Bacillus thuringiensis $\delta$-endotoxin Cry1A (a) associated with membrane binding and toxicity to Bombix mori. J. Bacteriol. 176:5554-5559.   DOI
16 Martin, P. A. W. and R. S. Travers (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437-2442.
17 McDowel, D. G. and N. H. Mann (1991) Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki HD1-DIPEL. Plasmid. 25:113-120.   DOI   ScienceOn
18 Moar, W. J., L. Masson, R. Brousseau and J. T. Trumble (1990) Toxicity to Spodoptera exigua and Trichoplusia ni of individual P1 protoxins and sporulated cultures of Bacillus thuringiensis subsp, kurstaki HD-1 and NRD-12. Appl. Environ. Microbiol. 56:2480-2483.
19 Ohba, M., N. Wasano and E. Mizuki (2000) Bacillus thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan. Microbiol. Res. 155:17-22.   DOI   ScienceOn
20 Ohba, M. and K. Aizawa (1978) Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32:303-309.   DOI
21 Park, J. D., H G. Goh, J. H Lee, W. J. Lee and K. J. Kim (1991) Flight activity and injury characteristics of beet armyworm, Spodoptera exigua (Hubner), (Lepidoptera: Noctuidae) in southern region of Korea. Korean J. Appl. Entomol. 30(2):124-129.
22 Ichimatsu, T., E. Mizuki, K. Nishimura, T. Akao, H. Saitoh, K. Higuchi and M. Ohba (2000) Occurrence of Bacillus thuringiensis in fresh water of Japan. Curr. Microbiol, 40:212-217.
23 Ishiwata, S. (1901) On a kind of severe flachrie (sotto disease). Dainihon sanshi Kaiho. 114:1-5.
24 Jung, S. Y. (2010) Molecular genetics studies of Bacillus thuringiensis subsp. kurstaki KB099 of insecticidal activity of Spodopetra litura. Chungnam University MS Thesis.
25 Jensen, S., L. Cavarec, M. P. Gassama and T. Heidmann (1995) Defective I elements introduced into Drosophila as trans genes can regulate reactivity and prevent I-R hybrid digenesis. Europ. Dros. Res. Conf. 14:198.
26 Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 277:680-685.
27 Kim H. S., D. W. Lee, H. W. Park, Y. M. Yu, J. I. Kim and S. K. Kang (1995a) Distributional characterization of Bacillus thuringiensis isolated from soils of sericultural farms in Korea. Korean J. Seric. Sci. 31(1):57-61.
28 Kim, H. S., H. W. Park, D. W. Lee, Y. M. Yu and S. K. Kang (1995b) Characterization of Bacillus thuringiensis isolated in granary dust. Korea J. Appl. Entomol. 34(3):243-248.
29 Lereclus, D., M. M. Lecadet, J. Ribier and R. Dedonder (1982) Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains, Mol. Gen. Genet. 186:391-398.   DOI   ScienceOn
30 Gonzalez, J. M. and B. C. Carlton (1980) Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis, Plasmid 3:92-98.   DOI   ScienceOn
31 Grochulski, P., L. Masson, S. Borisova, M. Pusztai-Carey, J. L. Schwartz, R. Brousseau and M. Cygler (1995) Bacillus thuringiensis Cry1A(a) insecticidal toxin: Crystal structure and channel formation. J. Mol. Biol. 254:447-464.   DOI   ScienceOn
32 Herrnstadt, C., G. G. Soares, E. R. Wilcox and D. L. Edwards (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Bio/Techno. 4:305-308.   DOI
33 Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242-255.
34 Feitelson, J. S., J. Payne and L. Kim (1992) Bacillus thuringiensis: insects and beyond. Bio/Technol. 10:271-275.   DOI
35 Ibarra, J. E. and B. A. Federici (1986) Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 165:527-533.   DOI
36 Gazit, E. and Y. Shai (1995) The assembly and organization of the a5 and a7 helices from the pore-forming domain of Bacillus thuringiensis $\delta$-endotoxin. J. Biol, Chem. 270:2571-2578.   DOI
37 Goh H. G., J. D. Park, Y. M. Choi and I. S. Park (1991) The host plants of beet armyworm, Spodoptera exigua (Hubner), (Lepidoptera: Noctuidae) and its occurrence. Korea J. Appl, Entomol. 30(2):111-116.
38 Goh, H. G., J. S. Choi, K. B. Uhm, K. N. Choi and J. W. Kim (1993a) Spatial distribution pattern of beet armyworm, Spodoptera exigua (Hubner), larvae in the welsh onion field. Korean J. Appl. Entomol. 32(2):134-138.
39 Goh, H. G., J. S. Choi, K. B. Uhm, K. N. Choi and J. W. Kim (1993b) Seasonal fluctuation of beet armyworm, Spodoptera exigua (Hubner), adult and larva. Korean J. Appl. Entomol. 32(4):389-394.
40 De Maagd, R. A., M. S. G. Kwa, H. Van der Klei, T. Yamamoto, B. Schipper, J. M. Vlak, W. J. Stiekema and D. Bosch (1996) Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry1Aa (b) result in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62:1537-1543.
41 Donovan, W. P., C. C. Dankocsik, M. P. Gilbert, M. C. Gawron-Burke, R. G. Groat and B. C. Carlton (1988) Amino acid sequence and entomocidal activity of the P2 crystal protein An insect toxin from Bacillus thuringiensis var. kurstaki. J. Biol. Chem. 263:561-567.
42 Dai, S., Gao, Li. X. M and R. Li (1996) Distribution of Bacillus thuringiensis in soils of north and south of China. Acta Microbiol. Sin. 36:295-302.
43 Edwards, D. L., J. Payne and G. G. Soares (1990) Novel isolates of Bacillus thuringiensis having activity against nematodes. U. S. Patent 4:948-734.
44 Burton, S. L., D. J. Ellar, J. Li and D. J. Derbyshire (1999) N-Acetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain III lectinlike fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287:1011-1022.   DOI   ScienceOn
45 Ceron, J., A. Ortiz, R. Quintero, L. Guereca and A. Bravo (1995) Specific PCR primers directed to identify cry I and cry III genes within a Bacillus thuringiensis strain collection. Appl. and Environ. Microbiol. 61:3826-3831.
46 Crickmore, N., D. R. Zeigler, J. Fcitelson, E. Schnepf, J. V. Rie, D. Lereclus, J. Baum and D. H. Dean (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbio. Mol. Biol. Rev. 62:807-813.
47 Cummings, C. E., G. Armstrong, T. C. Hodgeman and D. J. Ellar (1994) Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis $\delta$-endotoxin. Mol. Membr. Biol. 11:87-92.   DOI   ScienceOn
48 Armengol, G., M. C. Escobar, M. E. Maldonado and S. Orduz (2007) Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J. Appl. Microbiol. 102:77-88.   DOI   ScienceOn
49 Bechtel, D. B. and Jr. L. A. Bulla (1976) Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J. Bacteriol. 127:1472-1781.
50 Aronson, A. I., E. S. Han, W. McGaughey and D. Johnson (1991) The solubility of inclusion protein from Bacillus thuringiensis is defendant upon protoxin composition and is a factor in toxicity to insect. Appl. Environ. Microbiol. 57:981-986.
51 Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinal, R. Manasherob, A. Khamraev, E. Troitskaya, A. Dubitsky, N. Berezina and Y. Margalith (1997) Extended screening by PCR for seven cry-groups genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63:4883-4890.
52 Bernhard, K., P. Jarrett, M. Meadows, J. Butt, D. J. Ellis, G. M. Roberts, S. Pauli, P. Rodgers and H. D. Burges (1997) Natural isolates of Bacillus thuringiensis: Worldwide distribution, characterization and activity against insect pests. J. Invert. Pathol. 70:59-68.   DOI   ScienceOn
53 Yamamoto, T. and R. E. Mclaughlin (1981) Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to mosquito larvae, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103:414-421.   DOI   ScienceOn
54 Agrawal N., P. Malhotra and R. K. Bhatnagar (2002) Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein cry1C. Appl. Environ. Microbiol, 68:4583-4592.   DOI   ScienceOn
55 Agrawal, N., P. Malhotra and R. K. Bhatnagar (2004) siRNA-directed silencing of trans gene expressed in cultured insect cell. Biochem. Biophys. 320:428-434.   DOI   ScienceOn
56 Ahn S. B., I. S. Kim, W. S. Cho, M. H. Lee and K. M. Choi (1989) The occurrence of the crop insect pests from Korea in 1988. Korean J. Appl. Entomol. 28(4):246-253.
57 Visser, B., E. Munsterman, A. Stocker and W. G. Dirkse (1990) A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172:6783-6788.   DOI