Browse > Article
http://dx.doi.org/10.5307/JBE.2018.43.1.045

Review of Current Approaches for Implementing Metabolic Reconstruction  

Kim, Do-Gyun (Department of Biosystems Machinery Engineering, Chungnam National University)
Seo, Sung-Won (Department of Animal Biosystem Science, Chungnam National University)
Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University)
Lohumi, Santosh (Department of Biosystems Machinery Engineering, Chungnam National University)
Hong, Soon-jung (Rural Human Resource Development Center, Rural Development Administration)
Lee, Wang-Hee (Department of Biosystems Machinery Engineering, Chungnam National University)
Publication Information
Journal of Biosystems Engineering / v.43, no.1, 2018 , pp. 45-58 More about this Journal
Abstract
Background: Metabolic modeling has been an essential tool in metabolic reconstruction, which has dramatically advanced in the last decades as a part of systems biology. At present, the protocol for metabolic reconstruction has been systematically established, and it provides the basis for the analysis of complex systems, which has been limited in the past. Therefore, metabolic reconstruction can be adapted to analyze agricultural systems whose metabolic data has been accumulated recently. Purpose: The aim of this review is to suggest the suitability of metabolic modeling for understanding agricultural metabolic data and to encourage the potential use of this modeling in the field of agriculture. Review: We reviewed the procedure of metabolic reconstruction using computational modeling with applicable strategies and software tools. Additionally, we presented the initial attempts of metabolic reconstruction in the field of agriculture and proposed further applications.
Keywords
Agricultural systems; Metabolic data; Metabolic modeling; Metabolic reconstruction; Modeling software tools;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 King, Z. A., A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis and B. O. Palsson. 2015. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Computational Biology 11(8): e1004321.   DOI
2 Kitano, H. 2002. Systems biology: A brief overview. Science 295 (5560): 1662-1665.   DOI
3 Wastney, M. E., B. H. Patterson, O. A. Linares, P. C. Greif and R. C. Boston. 1999. Investigating Biological Systems Using Modeling: Strategies and Software. MA, USA: Academic Press.
4 Lakshmanan, M., Z. Zhang, B. Mohanty, J.-Y. Kwon, H.-Y. Choi, H.-J. Nam, D.-I. Kim and D.-Y. Lee. 2013. Elucidating rice cell metabolism under flooding and drought stresses using flux-based modeling and analysis. Plant Physiology 162(4): 2140-2150.   DOI
5 Klanchui, A., C. Khannapho, A. Phodee, S. Cheevadhanarak and A. Meechai. 2012. iAK692: A genome-scale metabolic model of Spirulina platensis C1. BMC Systems Biology 6(1): 71.
6 Kumar, A., P. F. Suthers and C. D. Maranas. 2012. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 13: 6.   DOI
7 Lakshmanan M., G. Koh, B. K. Chung and D. Y. Lee. 2012. Software applications for flux balance analysis. Briefings in Bioinformatics 15(1): 180-122.
8 Lee, W.H. and M. R. Okos. 2016. Model-based analysis of IGF-1 effect on osteoblast and osteoclast regulation in bone turnover. Journal of Biological Systems 24(1): 63-89.   DOI
9 Lee, Y. and E. O. Voit. 2010. Mathematical modeling of monolignol biosynthesis in Populus xylem. Mathematical Biosciences 228(1): 78-89.   DOI
10 Lemosquet, S., G. Raggio, G. E. Lobley, H. Rulquin, J. Guinard-Flament and H. Lapierre. 2009. Whole-body glucose metabolism and mammary energetic nutrient metabolism in lactating dairy cows receiving digestive infusions of casein and propionic acid. Journal of Dairy Science 92(12): 6068-6082.   DOI
11 Beste, D. J., T. Hooper, G. Stewart, B. Bonde, C. Avignone-Rossa, M. E. Bushell, P. Wheeler, S. Klamt, A. M. Kierzek, and J. McFadden. 2007. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biology 8(5): R89.   DOI
12 Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3): 403-410.   DOI
13 Bairoch, A. 1994. The ENZYME data bank. Nucleic Acids Research 22(17): 3626-3627.   DOI
14 Liu, L., R. Agren, S. Bordel and J. Nielsen. 2010. Use of genome-scale metabolic models for understanding microbial physiology. FEBS Letters 584(12): 2556-2564.   DOI
15 Bajwa, S. G., P. Bajcsy, P. Groves and L. E. Tian. 2004. Hyperspectral image data mining for band selection in agricultural applications. Transactions of the ASAE 47(3): 895-907.   DOI
16 Bates, J. T., D. Chivian and A. P. Arkin. 2011. GLAMM: genome-linked application for metabolic maps. Nucleic acids research 39 (suppl_2): W400-W405.   DOI
17 Becker, S. A., A. M. Feist, M. L. Mo, G. Hannum, B. O. Palsson and M. J. Herrgard. 2007. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature Protocols 2(3): 727-738.   DOI
18 Becker, S. A. and B. O. Palsson. 2008. Context-specific metabolic networks are consistent with experiments. PLoS Computational Biology 4(5): e1000082.   DOI
19 Bodor, Z., A. I. Fazakas, E. Kovcs, S. Lnyi and B. Albert. 2014. Systems biology and metabolic engineering for obtaining E. coli mutants capable to produce succinate from renewable resources. Romanian Biotechnological Letters 19(4): 9633-9644.
20 Boghigian, B. A., J. Armando, D. Salas and B. A. Pfeifer. 2012. Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Applied Microbiology and Biotechnology 93(5): 2063-2073.   DOI
21 Martin, O. and D. Sauvant. 2007. Dynamic model of the lactating dairy cow metabolism. Animal 1(8): 1143-1166.   DOI
22 Maglott, D., K. Ostell, K. D. Pruitt and T. Tatusova. 2004. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research 33 (suppl_1): D54-D58.   DOI
23 Mahadevan, R., J. S. Edwards and F. J. Doyle. 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophysical Journal 83(3): 1331-1340.   DOI
24 Mahadevan, R. and C. H. Schilling. 2003. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engineering 5(4): 264-276.   DOI
25 McCloskey, D., B. O. Palsson and A. M. Feist. 2013. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology 9(1): 661.
26 Montgomery, D. C. 2008. Design and Analysis of Experiments. New York, USA: John Wiley & Sons.
27 Nakahigashi, K., Y. Toya, N. Ishii, T. Soga, M. Hasegawa, H. Watanabe, Y. Takai, M. Honma, H. Mori and M. Tomita. 2009. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Molecular Systems Biology 5(1): 306.   DOI
28 Orth, J. D. and B. Palsson. 2010. Systematizing the generation of missing metabolic knowledge. Biotechnology and Bioengineering 107(3): 403-412.   DOI
29 Orth, J. D., I. Thiele and B. Palsson. 2010. What is flux Balance Analysis?. Nature Biotechnology 28(3): 245-248.   DOI
30 Bombarely, A., N. Menda, I. Y. Tecle, R. M. Buels, S. Strickler, T. Fischer-York, A. Pujar, J. Leto, J. Gosselin and L. A. Mueller. 2011. The sol genomics network (solgenomics.net): Growing tomatoes using Perl. Nucleic Acids Research 39 (suppl_1): D1149-D1155.   DOI
31 Bonarius, H. P. J., G. Schmid and J. Tramper. 1997. Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends in Biotechnology 15(8): 308-314.   DOI
32 Burgard, A. P., P. Pharkya and C. D. Maranas. 2003. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering 84(6): 647-657.   DOI
33 Caspi, R., H. Foerster, C. A. Fulcher, P. Kaipa, M. Krummenacker, M. Latendresse, S. Paley, S. Y. Rhee, A. G. Shearer, C. Tissier, T. C. Walk, P. Zhang and P. D. Karp. 2007. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research 36 (suppl_1): D623-D631.   DOI
34 Chou, I. C. and E. O. Voit. 2009. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 219(2): 57-83.   DOI
35 Reed, J. L. and B. O. Palsson. 2003. Thirteen years of building constraint-based in silico models of Escherichia coli. Journal of Bacteriology 185(9): 2692-2699.   DOI
36 Ouyang, S., W. Zhu, J. Hamilton, H. Lin, M. Campbell, K. Childs, F. Thibaud-Nissen, R. L. Malek, Y. Lee, L. Zheng, J. Orvis, B. Haas, J. Wortman and R. C. Buell. 2006. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Research 35 (suppl_1): D883-D887.
37 Palsson, B. 2006. Systems Biology: Properties of Reconstructed Networks. New York, USA: Cambridge University Press.
38 Poolman, M. G., S. Kundu, R. Shaw and D. a Fell. 2013. Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiology 162(2): 1060-1072.   DOI
39 Resendis-Antonio, O., J. L. Reed, S. Encarnacion, J. Collado-Vides and B. Palsson. 2007. Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Computational Biology 3(10): 1887-1895.
40 Rocha, I., P. Maia, P. Evangelista, P. Vilaca, S. Soares, J. P. Pinto, J. Nielsen, K. R. Patil, E. C. Ferreira and M. Rocha. 2010. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Systems Biology 4(1): 45.   DOI
41 Ruppin, E., J. A. Papin, L. F. de Figueiredo and S. Schuster. 2010. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Current Opinion in Biotechnology 21(4): 502-510.   DOI
42 Saha, R., P. F. Suthers and C. D. Maranas. 2011. Zea mays irs1563: A comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS ONE 6 (7): e21784.   DOI
43 Sasidharan, K., T. Soga, M. Tomita and D. B. Murray. 2012. A yeast metabolite extraction protocol optimised for time-series analyses. PLoS ONE 7 (8): e44283.   DOI
44 Edwards, J. S., M. Covert and B. Palsson. 2002. Metabolic modelling of microbes: The flux-balance approach. Environmental Microbiology 4(3): 133-140.   DOI
45 Copeland, W. B., B. A. Bartley, D. Chandran, M. Galdzicki, K. H. Kim, S. C. Sleight, C. D. Maranas and H. M. Sauro. 2012. Computational tools for metabolic engineering. Metabolic Engineering 14(3): 270-280.   DOI
46 Dharmawardhana, P., L. Ren, V. Amarasinghe, M. Monaco, J. Thomason, D. Ravenscroft, S. McCouch, D. Ware and P. Jaiswal. 2013. A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress. Rice 6(1): 15.   DOI
47 Droste, P., K. Noh and W. Wiechert. 2013. Omix-A visualization tool for metabolic networks with highest usability and customizability in focus. Chemie Ingenieur Technik 85(6): 849-862.   DOI
48 Durot, M., P. Y. Bourguignon and V. Schachter. 2009. Genome-scale models of bacterial metabolism: Reconstruction and applications. FEMS Microbiology Reviews 33(1): 164-190.   DOI
49 Ebrahim, A., J. A. Lerman, B. O. Palsson and D. R. Hyduke. 2013. COBRApy: Constraints-based reconstruction and analysis for Python. BMC Systems Biology 7: 74.   DOI
50 Edwards, J. S. and B. O. Palsson. 2000. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America 97(10): 5528-5533.   DOI
51 Schomburg, I., A. Chang, O. Hofmann, C. Ebeling, F. Ehrentreich and D. Schomburg. 2002. BRENDA: A resource for enzyme data and metabolic information. Trends in Biochemical Sciences 27(1): 54-56.   DOI
52 Schellenberger, J., J. O. Park, T. M. Conrad and B. O. Palsson. 2010. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11: 213.   DOI
53 Schellenberger, J., I. Thiele, J. D. Orth, R. Que, R. M. T. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C. Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke and B. O. Palsson. 2012. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols 6(9): 1290-1307.   DOI
54 Schilling, C. H., D. Letscher and B. O. Palsson. 2000. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology 203(3): 229-248.   DOI
55 Schuster, S., T. Dandekar and D. A. Fell. 1999. Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends in Biotechnology 17(2): 53-60.   DOI
56 Grafahrend-Belau, E., A. Junker, A. Eschenroder, J. Müller, F. Schreiber and B. H. Junker. 2013. Multiscale metabolic modeling: Dynamic flux balance analysis on a whole plant scale. Plant Physiology 163(2): 637-647.   DOI
57 Faraji, M., L. L. Fonseca, L. Escamilla-Trevino, R. A. Dixon and E. O. Voit. 2015. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum. Biotechnology for Biofuels 8: 151.   DOI
58 Feist, A. M., M. J. Herrgrd, I. Thiele, J. L. Reed and B. O. Palsson. 2009. Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology 7(2): 129-143.   DOI
59 Gombert, A. K. and J. Nielsen. 2000. Mathematical modelling of metabolism. Current Opinion in Biotechnology 11(2): 180-186.   DOI
60 Grafahrend-Belau, E., C. Klukas, B. H. Junker and F. Schreiber. 2009a. FBA-SimVis: Interactive visualization of constraint-based metabolic models. Bioinformatics 25(20): 2755-2757.   DOI
61 Hanigan, M. D. and R. L. Baldwin. 1994. A mechanistic model of mammary gland metabolism in the lactating cow. Agricultural Systems 45(4): 369-419.   DOI
62 Seaver, S. M. D., C. S. Henry and A. D. Hanson. 2012. Frontiers in metabolic reconstruction and modeling of plant genomes. Journal of Experimental Botany 63(6): 2247-2258.   DOI
63 Seo, S., D. M. Larkin and J. J. Loor. 2013. Cattle genomics and its implications for future nutritional strategies for dairy cattle. Animal 7 (s1): 172-183.   DOI
64 Seo, S. W., W. K. Paek and J. H. Lee. 2009. Recent status of chicken genome researches. Korean Journal of Poultry Science 36(2): 111-115 (In Korean, with English abstract).   DOI
65 Grafahrend-Belau, E., F. Schreiber, D. Koschutzki and B. H. Junker. 2009b. Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiology 149(1): 585-598.   DOI
66 Haefner, J. W. 1996. Modeling Biological Systems: Principles and Applications. London, UK: Chapman & Hall
67 Hoppe, A., S. Hoffmann, A. Gerasch, C. Gille and H.-G. Holzhutter. 2011. FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12: 28.
68 Hengenius, J. B., M. Gribskov, A. E. Rundell, C. C. Fowlkes and D. M. Umulis. 2011. Analysis of gap gene regulation in a 3D organism-scale model of the Drosophila melanogaster embryo. PLoS ONE 6(11): e26797.   DOI
69 Henry, C. S., M. DeJongh, A. A. Best, P. M. Frybarger, B. Linsay and R. L. Stevens. 2010. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology 28(9): 977-982.   DOI
70 Hillier, L. D. W., W. Miller, E. Birney, W. Warren, R. C. Hardison, C. P. Ponting, P. Bork, D. W. Burt, M. A. M. Groenen, M. E. Delany and J. B. Dodgson. 2004. Sequencing and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018): 695-716.   DOI
71 Stephanopoulos, G. N., A. A. Aristidou and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies. Amsterdam, Nederland: Elsevier.
72 Shlomi, T., O. Berkman and E. Ruppin. 2005. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proceedings of the National Academy of Sciences of the United States of America 102 (21): 7695-7700.   DOI
73 Simons, M., R. Saha, L. Guillard, G. Clment, P. Armengaud, R. Canas, C. D. Maranas, P. J. Lea and B. Hirel. 2014. Nitrogen-use efficiency in maize (Zea mays L.): From 'omics' studies to metabolic modelling. Journal of Experimental Botany 65(19): 5657-5671.   DOI
74 Stefanovski, D., P. J. Moate and R. C. Boston. 2003. WinSAAM: a windows-based compartmental modeling system. Metabolism 52(9): 1153-1166.   DOI
75 Thiele, I. and B. O. Palsson. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols 5(1): 93-121.   DOI
76 Varma, A. and B. O. Palsson. 1994a. Metabolic flux balancing: basic concepts, scientific and practical use. Nature Biotechnology 12(10): 994-998.   DOI
77 Villeger, A. C., S. R. Pettifer and D. B. Kell. 2010. Arcadia: a visualization tool for metabolic pathways. Bioinformatics 26(11): 1470-1471.   DOI
78 Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman J.-H. Hofmeyr P. J. Hunter N. S. Juty J. L. Kasberger A. Kremling U. Kummer N. Le Novre L. M. Loew D. Lucio P. Mendes E. Minch E. D. Mjolsness Y. Nakayama M. R. Nelson P. F. Nielsen T. Sakurada J. C. Schaff B. E. Shapiro T. S. Shimizu H. D. Spence J. Stelling K. Takahashi M. Tomita J. Wagner and J. Wang. 2003. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19(4): 524-531.   DOI
79 Hwang, K. and K. S. Fu. 1983. Integrated computer architectures for image processing and database management. Computer 16(1): 51-60.   DOI
80 Varma, A. and B. O. Palsson. 1994b. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Applied and Environmental Microbiology 60(10): 3724-3731.
81 Voit, E. O. 2012. A First Course in Systems Biology. New York, USA: Garland Science.
82 Waghorn, G. C. and R. L. Baldwin. 1984. Model of metabolite flux within mammary gland of the lactating cow. Journal of Dairy Science 67(3): 531-544.   DOI
83 Kim, W. S., S. Y. Lee, H. S. Park, W. K. Baik, J. H. Lee and S. Seo. 2010. Reconstruction of metabolic pathway for the chicken genome. Korean Journal of Poultry Science 37(3): 275-282 (In Korean, with English abstract).   DOI
84 Junker, B. H., C. Klukas and F. Schreiber. 2006. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7: 109.
85 Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto Encyclopaedia of Genes and Genomes. Nucleic Acids Research 28(1): 27-30.   DOI
86 Kim, D.G., B.K. Cho and W.H. Lee. 2016a. A novel approach in analyzing agriculture and food systems: Review of modeling and its applications. Korean Journal of Agricultural Science 43(2): 163-175.   DOI
87 Kim, W. S., H. S. Park and S. W. Seo. 2016b. Global metabolic reconstruction and metabolic gene evolution in the cattle genome. PLoS ONE 11(3): e0150974.   DOI
88 Kim, W. and S. Seo. 2012. Sequencing of the cattle genome toward finding ways to increase feed efficiency of cattle. Journal of Animal and Veterinary Advances 11(17): 3223-3227.   DOI
89 Yim, H., R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk and S. Van Dien. 2011. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology 7(7): 445-452.   DOI
90 Wiechert, W. 2002. Modeling and simulation: Tools for metabolic engineering. Journal of Biotechnology 94(1): 37-63.   DOI
91 Zhao, H., M. Li, K. Fang, W. Chen and J. Wang. 2012. In silico insights into the symbiotic nitrogen fixation in sinorhizobium meliloti via metabolic reconstruction. PLoS ONE 7(2): e31287.   DOI
92 Voit, E. O. 2013. Biochemical systems theory: a review. ISRN Biomathematics 2013(6): 1-53.