Browse > Article
http://dx.doi.org/10.5307/JBE.2017.42.3.217

CLIMEX-based Analysis of Potential Geographical Distribution of Aedes albopictus and Aedes aegypti in South Korea  

Jung, Jae-Min (Department of Biosystems Machinery Engineering, Chungnam National University)
Lee, Ji-Won (Department of Biosystems Machinery Engineering, Chungnam National University)
Kim, Chang-ju (Department of Biosystems Machinery Engineering, Chungnam National University)
Jung, Sunghoon (Department of Applied Biology, Chungnam National University)
Lee, Wang-Hee (Department of Biosystems Machinery Engineering, Chungnam National University)
Publication Information
Journal of Biosystems Engineering / v.42, no.3, 2017 , pp. 217-226 More about this Journal
Abstract
Purpose: Aedes aegypti and Aedes albopictus are notorious disease vectors that spread various viruses including dengue, yellow fever, chikungunya, and Zika. Recent Zika virus outbreaks were carried by Ae. aegypti, raising awareness about the perils of its global distribution. Because Ae. albopictus is spread throughout South Korea and can carry the same viruses as Ae. aegypti, monitoring potential distributions of Ae. albopictus and Ae. aegypti is necessary. Methods: In this study, the potential distributions of Ae. albopictus and Ae. aegypti in South Korea were modeled using CLIMEX software, and changes in response to climate change were predicted. Results: The results indicated that the climatic suitability for Ae. albopictus was consistently high, while occurrence of Ae. aegypti was only predicted for Jeju Island in 2080. Conclusions: The results provide basic information for preventing the invasion of Ae. aegypti, and consequent interactions between Ae. aegypti and Ae. albopictus, which may cause severe outbreaks of dangerous diseases.
Keywords
Aedes aegypti; Aedes albopictus; Climate change; CLIMEX; Potential distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 He, S., P.S. Worner and T. Ikeda. 2012. Modeling the potential global distribution of light brown apple moth Epiphyas postvittana (Lepidoptera: Tortricidae) using CLIMEX. Journal of Asia-Pacific Entomology 15(3): 479-485.   DOI
2 Musso, D., T. Nhan, E. Robin, C. Roche, D. Bierlaire, K. Zisou, A. Shan Yan, V.M. Cao-Lormeau and J. Broult. 2014. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill 19(14): 20761.   DOI
3 Ong, A., M. Sandar, M.I. Chen and L.Y. Sin. 2007. International Journal of Infectious Diseases - Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. International Journal of Infectious Diseases 11(3): 263-267.   DOI
4 Patz, J.A., W.J.M. Martens, D.A. Focks and T.H. Jetten. 1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106(3): 147.   DOI
5 Pialoux, G., B.A. Gaüzere, S. Jaureguiberry and M. Strobel. 2007. Chikungunya, an epidemic arbovirosis. The Lancet Infectious Diseases 7(5): 319-327.   DOI
6 Poutsma, J., A.J.M. Loomans, B. Aukema and T. Heijerman. 2008. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53: 103-125.   DOI
7 Ravi, V. 2006. Re-emergence of chikungunya virus in India. Indian Journal of Medical Microbiology 24(2): 83.   DOI
8 Russell, A.B.M., B.H. Kay and W. Shipton. 2001. Survival of Aedes aegypti (Diptera: Culicidae) eggs in surface and subterranean breeding sites during the northern Queensland dry season. Journal of Medical Entomology 38(3): 441-445.   DOI
9 Shabani, F., L. Kumar and A. Esmaeili. 2013. Use of CLIMEX, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. Journal of Earth Science & Climatic Change 4: 145.
10 Sharifi-Mood, B., R. Sharifi and Z. Barati. 2016. Zika Virus Infection. International Journal of Infection 3: 3.
11 Simmons, C.P., J.J. Farrar, N.V.V. Chau and B. Wills. 2012. Dengue. The New England Journal of Medicine 366(15): 1423-1432.   DOI
12 Sota, T. and M. Mogi. 1992. Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia 90(3): 353-358.   DOI
13 Sutherst, R.W. and A.S. Bourne. 2009. Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biological Invasions 11(6): 1231-1237.   DOI
14 Sutherst, R.W., G.F. Maywald and D.J. Kriticos. 2007. CLIMEX version 3: user's guide.
15 Taylor, S., L. Kumar, N. Reid and D.J. Kriticos. 2012. Climate change and the potential distribution of an invasive shrub, Lantana camara (L.). PLoS One 7: e35565.   DOI
16 Thomas, S.M., U. Obermayr, D. Fischer, J. Kreyling and C. Beierkuhnlein. 2012. Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasites & Vectors 5(1): 100.   DOI
17 Kriticos, D.J., G.F. Maywald, T. Yonow, E.J. Zurcher, N.I. Herrmann and R.W. Sutherst. 2015. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases. Canberra, ACT: CSIRO.
18 Luz, C., M.H.H. Tai, A.H. Santos and H.H.G. Silva. 2008. Impact of moisture on survival of Aedes aegypti eggs and ovicidal activity of Metarhizium anisopliae under laboratory conditions. Memorias do Instituto Oswaldo Cruz 103(2): 214-215.   DOI
19 Kutsuna, S., Y. Kato, M.L. Moi, A. Kotaki, M. Ota, K. Shinohara, T. Kobayashi, K. Yamamoto, Y. Fujiya, M. Mawatari, T. Sato, J. Kunimatsu, N. Takeshita, K. Hayakawa, S. Kanagawa, T. Takasaki and N. Ohmagari. 2015. Autochthonous Dengue fever, Tokyo, Japan, 2014. Emerging Infectious Diseases 21(3): 517.   DOI
20 Leparc-Goffart, I., A. Nougairede, S. Cassadou, C. Prat and X. de Lamballerie. 2014. Chikungunya in the Americas. The Lancet 383(9916): 514.   DOI
21 Malone, R.W., J.Homan, M.V. Callahan, J. Glasspool-Malone, L. Damodaran, A.de.B. Schneider, R. Zimler, J. Talton, R.R. Cobb, I. Ruzic, J. Smith-Gagen, D. Janies and J. Wilson. 2016. Zika virus: medical countermeasure development challenges. PLOS Neglected Tropical Diseases 10 (3): e0004530.   DOI
22 Marcondes, C.B. and M.D.F.F.D. Ximenes. 2016. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical 49(1): 4-10.   DOI
23 Monath T.P. 2001. Yellow fever: an update. The Lancet Infectious Diseases 1(1): 11-20.   DOI
24 Moore, C.G. and C.J. Mitchell. 1997. Aedes albopictus in the United States: ten-year presence and public health implications. Emerging infectious diseases 3(3): 329.   DOI
25 Hill, M.P., J.K. Axford and A.A. Hoffmann. 2014. Predicting the spread of Aedes albopictus in Australia under current and future climates: multiple approaches and datasets to incorporate potential evolutionary divergence. Austral Ecology 39(4): 469-478.   DOI
26 Intergovernmental Panel on Climate Change (IPCC), 2000. Special report on emissions scenarios: a special report of working group III of the Intergovernmental Panel on Climate Change. Switzerland.
27 Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland.
28 Intergovernmental Panel on Climate Change (IPCC), 2014. Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Switzerland.
29 Van den Hurk, A. F., S. Hall-Mendelin, A.T. Pyke, F.D. Frentiu, K. McElroy and A. Day. 2012. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Neglected Tropical Diseases 6(11): e1892.   DOI
30 Tun-Lin, W., T.R. Burkot and B.H. Kay. 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Medical and Veterinary Entomology 14(1): 31-37.   DOI
31 Vorsino, A. E., L.B. Fortini, F.A. Amidon, S.E. Miller, J.D. Jacobi, J.P. Price and G.A. Koob. 2014. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates. PloS One 9(5): e95427.   DOI
32 Watts, D.M., D.S. Burke, B.A. Harrison, R.E. Whitmire and A. Nisalak. 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. The American Journal of Tropical Medicine and Hygiene 36(1): 143-152.   DOI
33 Wen, T.H., M.H. Lin, H.J. Teng and N.T. Chang. 2015. Incorporating the human-Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Applied Geography 62: 256-266.   DOI
34 Wong, P.S.J., M.Z.I. Li, C.S. Chong, L.C. Ng and C.H. Tan. 2013. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Neglected Tropical Diseases 7(8): e2348.   DOI
35 Shuman, E.K. 2010. Global Climate Change and Infectious Diseases. New England Journal of Medicine 362(12): 1061-1063.   DOI
36 Knudsen, A.B. 1995. Global distribution and continuing spread of Aedes albopictus. Parassitologia 37(2-3): 91-97.
37 Kobayashi, M., N. Nihei and T. Kurihara. 2002. Analysis of northern distribution of Aedes albopictus (Diptera: Culicidae) in Japan by geographical information system. Journal of Medical Entomology 39(1): 4-11.   DOI
38 Koopman, J.S., D.R. Prevots, M.A.V Marin, H.G. Dantes, M.L.Z. Aquino, I.M. Longini Jr and J.S. Amor. 1991. Determinants and predictors of dengue infection in Mexico. American Journal of Epidemiology 133(11): 1168-1178.   DOI
39 Kraemer, M.U., M.E. Sinka, K.A. Duda, A.Q.N. Mylne, F.M. Shearer, C.M. Barker, C.G. Moore, R.G. Carvalho, G.E. Coelho, W.V. Bortel, G. Hendrickx, F. Schaffner, I.R.F. Elyazar, H. Teng, O.J. Brady, J.P. Messina, D.M. Pigott, T.W. Scott, D.L. Smith, G.R.W. Wint, N. Golding and S.I. Hay. 2015a. The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. Elife 4: e08347.
40 Kraemer, M.U., M.E. Sinka, K.A. Duda, A.Q.N. Mylne, F.M. Shearer, O.J. Brady, J.P. Messina, C.M. Barker, C.G. Moore, R.G. Carvalho, G.E. Coelho, W.V. Bortel, G. Hendrickx, F. Schaffner, G.R.W. Wint, I.R.F. Elyazar, H. Teng and S.I. Hay. 2015b. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data 2: sdata201535.
41 Jentes, E.S., G. Poumerol, M.D. Gershman, D.R. Hill, J. Lemarchand, R.F. Lewis, J.E. Staples, O. Tomori, A. Wilder-Smith and T.P. Monath. 2011. Informal WHO working group on geographic risk for yellow fever. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the informal WHO working group on geographic risk for yellow fever. The Lancet. Infectious Diseases 11(8): 622-632.   DOI
42 Jung, J.M., W.H. Lee and S.H. Jung. 2016. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomological Research 46(4): 223-235.   DOI
43 Khormi, H.M. and L. Kumar. 2014. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX. Geospatial health 8(2): 405-415.   DOI
44 Alto, B.W. and S.A. Juliano. 2001. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of medical entomology 38(5): 646-656.   DOI
45 Bhatt, S., P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, J.M. Drake, J.S. Brownstein, A.G. Hoen, O. Sankoh, M.F. Myers, D.B. George, T. Jaenisch, G.R.W. Wint, C.P. Simmons, T.W. Scott, J.J. Farrar and S.I. Hay. 2013. The global distribution and burden of dengue. Nature 496(7446) (2013): 504.   DOI
46 Brown, M.R., K.D. Clark, M. Gulia, Z. Zhao, S.F. Garczynski, J.W. Crim, R.J. Suderman and M.R. Strand. 2008. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences 105(15): 5716-5721.   DOI
47 Carrington, L.B., M.V. Armijos, L. Lambrechts, C.M. Barker and T.W. Scott. 2013. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti Life-History Traits. PloS One 8(3): e58824.   DOI
48 Chang, L.H., E.L. Hsu, H.J. Teng, and C.M. Ho. 2007. Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. Journal of medical entomology 44(2): 205-210.   DOI
49 Cheon, H.M., S.W. Shin, G. Bian, J.H. Park and A.S. Raikhel. 2006. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. Journal of Biological Chemistry 281(13): 8426-8435.   DOI
50 Chejara, V.K., D.J. Kriticos, P. Kristiansen, B.M. Sindel, R.D.B. Whalley and C. Nadolny. 2010. The current and future potential geographical distribution of Hyparrhenia hirta. Weed Research 50(2): 174-184.   DOI
51 Chotiwan, N., I. Sanchez-Vargus, J.M. Grabowski, A. Hopf-jannasch, V. Hedrick, E. Gough, E. Nakayasu, D. Sirohi, C.A. Hill, R.J. Kuhn and R. Perera. 2015. Impact of Dengue virus infection on global metabolic alterations in the Aedes aegypti mosquito vector. New Horizons in Translational Medicine 2(4): 130.
52 Farrar, J. and J. Whitehorn, 2010. Dengue. British Medical Bulletin 95: 161-73.   DOI
53 Brady, O.J., P.W. Gething, S. Bhatt, J.P. Messina, J.S. Brownstein, A.G. Hoen, C.L. Moyes, A.W. Farlow, T.W. Scott and S.I. Hay. 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases 6(8): e1760.   DOI
54 Fontenille, D. and F. Rodhain. 1989. Biology and distribution of Aedes albopictus and Aedes aegypti in Madagascar. Journal of the American Mosquito Control Association 5(2): 219-225.
55 Grard, G., M. Caron, I.M. Mombo, D. Nkoghe, S.M. Ondo, D. Jiolle, D. Fontenille, C. Paupy and E.M. Leroy. 2014. Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus?. PLoS Neglected Tropical Diseases 8(2): e2681   DOI