Browse > Article
http://dx.doi.org/10.5307/JBE.2016.41.3.240

Biosensors and their Applications in Food Safety: A Review  

Yasmin, Jannat (Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University)
Ahmed, Mohammed Raju (Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University)
Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University)
Publication Information
Journal of Biosystems Engineering / v.41, no.3, 2016 , pp. 240-254 More about this Journal
Abstract
Background: Foodborne pathogens are a growing concern with respect to human illnesses and death. There is an increasing demand for improvements in global food safety. However, it is a challenge to detect and identify these harmful organisms in a rapid, responsive, suitable, and effective way. Results: Rapid developments in biosensor designs have contributed to the detection of foodborne pathogens and other microorganisms. Biosensors can automate this process and have the potential to enable fast analyses that are cost and time-effective. Various biosensor techniques are available that can identify foodborne pathogens and other health hazards. Conclusions: In this review, biosensor technology is briefly discussed, followed by a summary of foodborne pathogen detection using various transduction systems that exhibit specificity for particular foodborne pathogens. In addition, the recent application of biosensor technology to detect pesticides and heavy metals is briefly addressed.
Keywords
Biosensor; Biotechnology; Food safety; Foodborne pathogens; Rapid measurement;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 PHAC. 2016. Public Health Notice Update -Outbreak of Listeria infections linked to packaged salad products produced at the Dole processing facility in Springfield, Ohio, IL: Public Health Agency of Canada. Available at:www.phac-aspc.gc.ca/phn-asp/2016/listeria-eng.php.
2 Plata, G. V. D. 2003. La Contaminacion de los Alimentos, un Problema por Resolver. Salud UIS 35(1):48-57 (In Spanish, with English abstract).
3 He, H. Z., K. H. Leung, H. Yang, D. S. H. Chan, C. H. Leung, J. Z., A. B., J. L. Mergny and D. L. Ma. 2013. Label-free detection of sub-nanomolar lead (II) ions in aqueous solution using a metal-based luminescent switch-on probe. Biosensors and Bioelectronics 41:871-874.   DOI
4 Hendriksen, R. S., A. R. Vieira, S. Karlsmose, D. M. A. L. F. Wong, A. B. Jensen, H. C. Wegener and F. M. Aarestrup. 2011. Global Monitoring of Salmonella Serovar Distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of Quality Assured Laboratories from 2001 to 2007. Foodborne Pathogens and Disease 8(8):887-900.   DOI
5 Hoffmann, S., B. Maculloch and M. Batz. 2015. Economic Burden of Major Foodborne Illnesses Acquired in the United States. USDA-140. Washimhton, D.C.:GPO.
6 Iqbal, S. S., M. W. Mayo, J. G. Bruno, B. W. Bronk, C. A. Batt and J. P. Chambers. 2000. A review of molecular recognition technologies for detection of biological threat agents. Biosensors & Bioelectronics 15(11-12):549-578.   DOI
7 Ivnitski, D., I. Abdel-Hamid, P. Atanasov and E. Wilkins. 1999. Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics 14(7):599-624.   DOI
8 Jeong, E. S., K. S. Lee, S. H. Heo, J. H. Seo and Y. K. Choi. 2011. Triplex PCR for the Simultaneous Detection of Pseudomonas aeruginosa, Helicobacter hepaticus, and Salmonella typhimurium. Experimental Animals 60(1):65-70.   DOI
9 Romanov, V., I. Galelyuka, V. Glushkov, N. Starodub and R. Son'ko. 2011. P7 -Optical Immune Biosensor Based on SPR for the Detection of Salmonella Typhimurium. In: Proceedings OPTO 2011, pp.139-144, Nurnberg, AMA Conferences.
10 Wang, X., M. Liu, X. Wang, Z. Wu, L. Yang, S. Xia, L. Chen and J. Zhao. 2013. p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosensors and Bioelectronics 41:557-562.   DOI
11 Sbartai, A., P. Namour, A. Errachid, J. Krejci, R. Sejnohova, L. Renaud, M.L. Hamlaoui, A.-S. Loir, F. Garrelie, C. Donnet, H. Soder, E. Audouard, J. Granier, and N. Jaffrezic-Renault. 2012. Electrochemical boron-doped diamond film microcells micromachined with femtosecond laser: application to the determination of water framework directive metals. Analytical Chemistry 84(11):4805-4811.   DOI
12 Setterington, E. B. and E. C. Alocilja. 2011. Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Biosensors and Bioelectronics 26(5):2208-2214.   DOI
13 Singh, A., H. N. Verma and K. Arora. 2015. Surface Plasmon Resonance Based Label-Free Detection of Salmonella using DNA Self Assembly. Applied Biochemistry and Biotechnology 175(3):1330-1343.   DOI
14 Singh, A., S. Poshtiban, and S. Evoy. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13(2):1763-1786.   DOI
15 Rahn, K., S. A. De Grandis, R. C. Clarke, S. A. McEwen, J. E. Galan, C. Ginocchio, R. Curtiss and C. L. Gyles. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes 6(4):271-279.   DOI
16 Kim, M., J. W. Lim, H. J. Kim, S. K. Lee, S. J. Lee and T. Kim. 2015. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosensors and Bioelectronics 65:257-264.   DOI
17 Kisukuri, C. M. and L. H. Andrade. 2015. Production of chiral compounds using immobilized cells as a source of biocatalysts. Organic & Biomolecular Chemistry 40(13):10086-10107.
18 Sun, W., X. Qi, Y. Zhang, H. Yang, H. Gao, Y. Chen and Z. Sun. 2012. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochemica Acta 85:145-151.   DOI
19 Tao, H. C., Z. W. Peng, P.S. Li, T. A. Yu and J. Su. 2013. Optimizing cadmium and mercury specificity of CadRbased E-coli biosensors by redesign of CadR. Biotechnology Letters 35 (8):1253-1258.   DOI
20 Radhakrishnan, R., M. Jahne, S. Rogers and I. Ian. 2013. Suni. Detection of Listeria Monocytogenes by Electrochemical Impedance Spectroscopy. Electroanalysis 25(9):2231-2237.   DOI
21 Riley, L.W., R. S. Remis, S. D. Helgerson, H. B. McGee, J. G. Wells, B. R. Davis, M. S., Richard J. Hebert, M. D., E. S. Olcott, R. N., L. M. Johnson, R. N., M. S., N. T. Hargrett, P. A. Blake, M. D., M. P. H., and M. D. C. L. Mitchell. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. The New England Journal of Medicine 308:681-685.   DOI
22 Liu, F. and C. Zhang. 2015. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sensors and Actuators B: Chemical 209:399-406.   DOI
23 Liu, G. and Y. Lin. 2006. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry 78(3):835-843.   DOI
24 Lee, J. H., J. Y. Park, K. Min, H. J. Cha, S. S. Choi and Y. J. Yoo. 2010. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosensors and Bioelectronics 25(7):1566-1570.   DOI
25 Korsak, D., E. Mackiw, E. Rozynek and M. Zylowska. 2015. Prevalence of Campylobacter spp. in retail chicken, turkey, pork, and beef meat in Poland between 2009 and 2013. Journal of Food Protection 78(5):1024-1028.   DOI
26 Kovacs, G. 1998. Micromachined Transducers: Sourcebook. WCB/McGraw Hill, Inc.
27 Krejcova, L., P. Michalek, M. M. Rodrigo, Z. Heger, S. Krizkova, M. Vaculovicova, D. Hynek, V. Adam and R. Kizek. 2015. Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis 4: 47-66.
28 Leonard, P., S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty and R. O'Kennedy. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microbial Technology 32(1):3-13.   DOI
29 Li, K., Y. Lai, W. Zhang and L. Jin. 2011. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84(3):607-613.   DOI
30 Li, M., X. Zhou, W. Ding, S. Guo and N. Wu. 2013. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II). Biosensors and Bioelectronics 41:889-893.   DOI
31 Zelada-Guillen, G. A., S.V. Bhosale, J. Riu and F. X. Rius. 2010. Real-Time Potentiometric Detection of Bacteria in Complex Samples. Analytical Chemistry, 82(22):9254-9260.   DOI
32 Liu, G., J. Wang, R. Barry, C. Petersen, C. Timchalk, P. Gassman and Y. Lin. 2008. Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chemistry-A European Journal 14(32):9951-9959.   DOI
33 Liu, G. and Y. Lin. 2005. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical Chemistry 77(18):5894-5901   DOI
34 Yeni, F., S. Acar, O.G. Polat, Y. Soyer and H. Alpas. 2014. Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40:359-367.   DOI
35 Zhang, D., Y. Yan, Q. Li, T. Yu, W. Cheng, L. Wang, H. Ju and S. Ding. 2012. Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor. Journal of Biotechnology 160(3-4):123-128.   DOI
36 Zhang, H., Y. Shi, F. Lan, Y. Pan, Y. Lin, J. Lv, Z. Zhu, Q. Jiang and C. Gqing. 2014. Detection of single-digit foodborne pathogens with the naked eye using carbon nanotubebased multiple cycle signal amplification. Chemical Communications 50(15):1848-1850.   DOI
37 Zhang, L., A. Zhang, D. Du and Y. Lin. 2012. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 4(15):4674-4679.   DOI
38 Zhang, W., A. M. Asiri, D. Liu, D. Du and Y. Lin. 2014. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry 54:1-10.   DOI
39 Lijian, X., D. Jingjing, D. Yan and H. Nongyue. 2012. Electrochemical Detection of E. coli O157:H7 Using Porous Pseudo-Carbon Paste Electrode Modified with Carboxylic Multi-Walled Carbon Nanotubes, Glutaraldehyde and 3-Aminopropyltriethoxysilane. Journal of Biomedical Nanotechnology 8(6):1006-1011.   DOI
40 Li, Y., R. Afrasiabi, F. Fathi, N. Wang, C. Xiang, R. Love, Z. She and H. B. Kraatz. 2014. Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene antimicrobial peptide modified biosensor. Biosensors and Bioelectronics 58:193-199.   DOI
41 Amine, A., L. El Harrad, F. Arduini, D. Moscone and G. Palleschi. 2014. Analytical aspects of enzyme reversible inhibition. Talanta 118:368-374.   DOI
42 Mehta, J., S. K. Bhardwaj, N. Bhardwaj, A. K. Paul, P. Kumar, K. H. Kim and A. Deep. 2016. Progress in the biosensing techniques for trace-level heavy metals. Biotechnology Advances 34(1):47-60.   DOI
43 Alocilja, E. C. and S. M. Radke. 2003. Market analysis of biosensors for food safety. Biosensors and Bioelectronics 18(5-6):841-846.   DOI
44 Amaro, F., A. P. Turkewitz, A. Martin-Gonzalez and J. C. Gutierrez. 2014. Functional GFP metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals 27(1):195-205.   DOI
45 Arugula, M. A. and A. Simonian. 2014. Novel trends in affinity biosensors: current challenges and perspectives. Measurement Science and Technology 25(3):032001-032022.   DOI
46 Zhang, W., Y. Tang, D. Du, J. N. Smith, C. Timchalk, D. Liu and Y. Lin. 2013. Direct analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos. Talanta 114:261-267.   DOI
47 Zhang, X., H. Wang, C. Yang, D. Du and Y. Lin. 2013. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosensors and Bioelectronics 41(1):669-674.   DOI
48 Lin, H., Q. Lu, S. Ge, Q. Cai and C. Grimes. 2010. Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sensors and Actuators B: Chemical 147(1):343-349.   DOI
49 Lin, Y., F. Lu and J. Wang. 2004. Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1-2):145-149.   DOI
50 Arduini, F. and A. Amine. 2014. Biosensors based on enzyme inhibition. In: Biosensors Based on Aptamers and Enzymes, eds. M. B. Gu and H. Kim, pp 299-326. Berlin, ISSN:0724-6145.
51 Bagal-Kestwal, D., M. S. Karve, B. Kakade and V. K. Pillai. 2008. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Biosensors and Bioelectronics 24(4):657-664.   DOI
52 Afonso, A. S., B. Perez-Lopez, R. C. Faria, L. H. C. Mattoso, M. Hernandez-Herrero, A. X. Roig-Sagues, M. Maltez-da Costa and A. Merkoci. 2013. Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics 40(1):121-126.   DOI
53 Alavanja, M. C. R., M. Dosemeci, C. Samanic, J. Lubin, C. F. Lynch, C. Knott, J. Barker, J. A. Hoppin, D. P. Sandler, J. Coble, K. Thomas and A. Blair. 2004. Pesticides and lung cancer risk in the agricultural health study cohort. American Journal of Epidemiology 160(9):876-885.   DOI
54 Cabrera, L., J. Witte, B. Victor, L. Vermeiren, M. Zimic, J. Brandt and D. Geysen. 2009. Specific detection and identification of African trypanosomes in bovine peripheral blood by means of a PCR-ELISA assay. Veterinary Parasitology 164 (2-4):111-117.   DOI
55 Bharadwaj, R., V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma and S. Mukherji. 2011. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosensors and Bioelectronics 26(7):3367-3370.   DOI
56 BIO. 2016. Healing, Fueling, Feeding: How Biotechnology Is Enriching Your Life. Washington, D.C.: Biotechnology Innovation Organization. Available at: www.bio.org/articles/healing-fueling-feeding-how-biotechnologyenriching-your-life.
57 Bokken, G. C. M. B., R. J. Corbee, F. Knapen and A. A. Bergwerff. 2003. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiology Letters 222(1):75-82.   DOI
58 Bruno J. G., T. Phillips, M. P. Carrillo and R. Crowell. 2009. Plastic-Adherent DNA Aptamer-Magnetic Bead and Quantum Dot Sandwich Assay for Campylobacter Detection. Journal of Fluorescence 19(3):427-435.   DOI
59 Buyukgungor, H. and L. Gurel. 2009. The Role of Biotechnology on the Treatment of Wastes. African Journal of Biotechnology 8(25):7253-7262.
60 CDC. 2014. Shiga Toxin-Producing E. coli & Food Safety. USA, IL: Centers for Disease Control and Prevention. Available at: www.cdc.gov/Features/EcoliInfection/index.html.
61 CDC. 2016. 2015 Food Safety Report. USA, IL: Centers for Disease Control and Prevention. Available at: www.cdc.gov/foodnet/index.html.
62 Chemburu, S., E. Wilkins and I. Abdel-Hamid. 2005. Detection of pathogenic bacteria in food samples using highlydispersed carbon particles. Biosensors and Bioelectronics 21(3):491-499.   DOI
63 Chai, Y., S. Li, S. Horikawa, Mi-Kyung Park, V. Vodyanoy and A. Bryan. 2012. Rapid and Sensitive Detection of Salmonella Typhimurium on Eggshells by Using Wireless Biosensors. Journal of Food Protection 75(4):631-636.   DOI
64 Chan, K. Y., W. W. Ye, Y. Zhang, L. D. Xiao, P. H. M. Leung, Y. Li and M. Yang. 2013. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosensors and Bioelectronics 41:532-537.   DOI
65 Chauhan, N. and C. S. Pundir. 2011. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Analytica Chimica Acta 701(1):66-74.   DOI
66 Lu, Y., W. Yang, L. Shi, L. Li, M. J. Alam, S. Guo and S. Miyoshi. 2009. Specific Detection of Viable Salmonella Cells by an Ethidium Monoazide-Loop Mediated Isothermal Amplification (EMA-LAMP) Method. Journal of Health Science 55(5):820-824.   DOI
67 Chowdhury, A. D., A. De, C. R. Chaudhuri, K. Bandyopadhyay and P. Sen. 2012. Label free polyaniline based impedimetric biosensor for detection of E. coli O157:H7 Bacteria. Sensors and Actuators B: Chemical 171-172:916-923.   DOI
68 Crim, S. M., P. M. Griffin, R. Tauxe, E. P. Marder, D. Gilliss, A. B. Cronquist, M. Cartter, M. Tobin-D'Angelo, D. Blythe, K. Smith, S. Lathrop, S. Zansky, P. R. Cieslak, J. Dunn, K. G. Holt, B. Wolpert and O. L. Henao. 2015. Prevention Preliminary incidence and trends of infection with pathogens transmitted commonly through food-Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2006-2014. Morbidity and Mortality Weekly Report 64(18):495-499.
69 Long, F., A. Zhu, H. Shi, H. Wang and J. Liu. 2013. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports 3, Article number:2308.
70 Lu, D., J. Wang, D. Du, C. Timchalk, R. Barry and Y. Lin. 2011. A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. Advanced Functional Materials 21(22):4371-4378.   DOI
71 Ma, X., Y. Jiang, F. Jia, Y. Yu, J. Chen and Z. Wang. 2014. An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods 98:94-98.   DOI
72 Manzano, M., F. Cecchini, M. Fontanot, L. Iacumin, G. Comi and P. Melpignano. 2015. OLED-based DNA biochip for Campylobacter spp. detection in poultry meat samples. Biosensors and Bioelectronics 66:271-276.   DOI
73 Matthews, G. A., 2014. Pesticide Application Methods. New York: John Wiley & Sons.
74 Mazumdar, S. D., B. Barlen, P. Kampfer and M. Keusgen. 2010. Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosensors and Bioelectronics 25(5):967-971.   DOI
75 Davis, D., X. Guo, L. Musavi, C. S. Lin, S. H. Chen and C. H. W. Vivian. 2013. Gold Nanoparticle-Modified Carbon Electrode Biosensor for the Detection of Listeria monocytogenes. Industrial Biotechnology 9(1):31-36.   DOI
76 Criswell, J. T., J. Campbell and C. Luper. 2013. Toxicity of pesticides. Oklahoma Cooperative Extension Service, EPP-7457.
77 Darnton, N., L.Turner, S. Rojevsky and H. Berg. 2007. On Torque and Tumbling in Swimming Escherichia coli. Journal of Bacteriology 189(5):1756-1764.   DOI
78 Daum, L. T., W. J. Barnes, J. C. Mcavin, M. S. Neidert, L. A. Cooper, W. B. Huff, L. Gaul, W. S. Riggins, S. Morris, A. Salmen and K. L. Lohman. 2002. Real-Time PCR Detection of Salmonella in Suspect Foods from a Gastroenteritis Outbreak in Kerr County, Texas. Journal of Clinical Microbiology 40(8):3050-3052.   DOI
79 Deng, L., Y. Xu and J. Huang. 2008. Developing a doubleantigen sandwich ELISA for effective detection of human hepatitis B core antibody. Comparative Immunology, Microbiology & Infectious Diseases 31(6):515-526.   DOI
80 Mazumdar, S. D., M. Hartmann, P. Kampfer and M. Keusgen. 2007. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosensors and Bioelectronics 22(9-10):2040-2046.   DOI
81 MedScape. 2015. Campylobacter Infections. Available at:emedicine.medscape.com/article/213720-overview#a6.
82 Zhao, X., C. Lin, J. Wang and D. H. Oh. 2014. Advances in Rapid Detection Methods for Foodborne Pathogens. Journal of Microbiology and Biotechnology 24(3):297-312.   DOI
83 Zhao, Y., W. Zhang, Y. Lin and D. Du. 2013. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5(3):1121-1126.   DOI
84 Zhao, z. and H. Jiang. 2010. Enzyme-based Electrochemical Biosensors. In: Biosensors, eds. Pier Andrea Serra, pp.1-22. ISBN 978-953-7619-99-2. InTech, Available at: http://www.intechopen.com/books/biosensors/enzyme-based-electrochemical-biosensors.
85 Zou, Z., D. Du, J. Wang, J. N. Smith, C. Timchalk, Y. Li and Y. Lin. 2010. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Analytical Chemistry 82(12):5125-5133.   DOI
86 Wang, Y., S. Zhang, D. Du, Y. Shao, Z. Li, J. Wang, M.H. Engelhard, J. Li and Y. Lin. 2011. Self assembly of acetylcholinesterase on a gold nanoparticles-graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry 21(14):5319-5325.   DOI
87 Wang, Z.P., H. Xu, J. Wu, J. Ye and Z. Yang. 2011. Sensitive detection of Salmonella with fluorescent bioconjugated nanoparticles probe. Food Chemistry 125(2):779-784.   DOI
88 Du, D., J. Liu, X. Zhang, X. Cui and Y. Lin. 2011. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents. Journal of Materials Chemistry 21(22):8032-8037.   DOI
89 Deo, R. P., J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen and Y. Lin. 2005. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta 530(2):185-189.   DOI
90 Du, D., A. Chen, Y. Xie, A. Zhang and Y. Lin. 2011. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosensors and Bioelectronics 26(9):3857-3863.   DOI
91 Torso, L. M., R. E. Voorhees, S. A. Forest, A. Z. Gordon, S. A. Silvestri, B. Kissler, J. Schlackman, C.H. Sandt, P. Toma, J. Bachert, K. J. Mertz and L. H. Harrison. 2015. Escherichia coli O157:H7 outbreak associated with restaurant beef grinding. Journal of Food Protection 78(7):1272-1279.   DOI
92 Wei, D., O. Oyarzabal, T. Huang, S. Balasubramanian, S. Sista and A. Simonian. 2007. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. Journal of Microbiological Methods 69(1):78-85.   DOI
93 Wells, J. G., B. R. Davis, I. K. Wachsmuth, L. W. Riley, R. S. Remis, R. Sokolow and G. K. Morris. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. Journal of Clinical Microbiology 18(3):512-520.
94 Tolba, M., M. U. Ahmed, C. Tlili, F. Eichenseher, M. J. Loessner and M. Zourob. 2012. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137(24):5749-5756.   DOI
95 Vaisocherova-Lisalova, H., I. Visova, M. L. Ermini, T. Springer, X. C. Song, J. Mrazek, J. Lamacova, N. S. Lynn, P. Sedivak and J. Homol. 2016. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics 80: 84-90.   DOI
96 Varshney, M., L. Yang, X. L. Su and Y. Li. 2005. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli 0157:H7 in ground beef. Journal of Food Protection 68:1804-1811.   DOI
97 Velusamy, V., K. Arshak, O. Korostynska, K. Oliwa and C. Adley. 2010. An overview of foodborne pathogen detection: In the prespective of biosensors. Biotechnology advances 28(2):232-254.   DOI
98 Du, D., W. Chen, W. Zhang, D. Liu, H. Li and Y. Lin. 2010. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosensors and Bioelectronics 25(6):1370-1375.   DOI
99 Du, D., J. Wang, J. N. Smith, C. Timchalk and Y. Lin. 2009. Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection. Analytical Chemistry 81(22):9314-9320.   DOI
100 Du, D., J. Wang, L. Wang, D. Lu and Y. Lin. 2012. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase:biomarker of exposure to organophosphorus agents. Analytical Chemistry 84(3):1380-1385.   DOI
101 Dudak, F. C. and I. H. Boyaci. 2009. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnology Journal 4(7):1003-1011.   DOI
102 Eberth, Prof C. J. 1880. Die Organismen in den Organen bei Typhus abdominalis. Archiv fur pathologische Anatomie und Physiologie und fur klinische Medicin 81(1):58-74 (In German).
103 Gammoudi, I., H. Tarbague, A. Othmane. D. Moynet, D. Rebiere, R. Kalfat and C. Dejous. 2010. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosensor & Bioelectronics 26(4):1723-1726.   DOI
104 Wang, H., J. Wang, C. Timchalk and Y. Lin. 2008. Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Analytical Chemistry 80(22):8477-8484.   DOI
105 Meng, X., J. Wei, X. Ren, J. Ren and F. Tang. 2013. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors and Bioelectronics 47:402-407.   DOI
106 Nachamkin, I. and M. J. Blaser. 2000. Campylobacter. 2nd ed., American Society for Microbiology, Washington D. C., USA: Elsevier Science.
107 FAO, 1996. Plan de Accion de la Cumbre Mundial sobre la Alimentacion, parrafo 1. In: Declaracion de Roma sobre la Seguridad Alimentaria Mundial y Plan de Accion de laCumbre Mundial sobre la Alimentacion. Cumbre Mundial sobre la Alimentacion, 43:13-17.
108 Feng, P. and W. Burkhardt. 2002. Bacteriological Analytical Manual.8th ed. Silver Spring, USA: Elsevier Science.
109 WHO. 2015. World Health Day 2015: Food safety. India:WHO. Available at: www.who.int/campaigns/worldhealth-day/2015/event/en/.
110 White, D. G., S. Zhao, S. Simjee, D. D. Wagner and P. F. McDermott. 2002. Antimicrobial resistance of foodborne pathogens. Microbes and Infection 4(4):405-412.   DOI
111 Wladir, B. V., G. D. Edward, S. Doores and C. N. Cutter. 2015. Commercially Available Rapid Methods for Detection of Selected Foodborne Pathogens. Food, Science and Nutrition 56(9):1519-1531.
112 Wong, L. S. and C. S. Wong. 2015. A New Method for Heavy Metals and Aluminium Detection Using Biopolymer-Based Optical Biosensor. Ieee Sensors Journal 15(1):471-475.   DOI
113 Yada, R.Y. 2015. Improving and Tailoring Enzymes for Food Quality and Functionality. Ist ed. Burlington:Elsevier Science.
114 Yan, H., N. Tang, G. A. Jairo, S. Chakravarty, D. A. Blake and R. T. Chen. 2016. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals. Proc. In: Frontiers in Biological Detection: From Nanosensors to Systems VIII, pp. 972501-972508, United States, Proceedings of SPIE.
115 Yang, H., H. Li and X. Jiang. 2008. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluidics and Nanofluidics 5(5):571-583.   DOI
116 Givaudan, N., F. Binet, B. L. Bot and C. Wiegand. 2014. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities. Environmental Pollution 192:9-18.   DOI
117 Gammoudi, I., V. Raimbault, H. Tarbague, F. Morote, C. Grauby-Heywang, A. Othmane, R. Kalfat, D. Moynet, D. Rebiere, C. Dejous and T. Cohen-Bouhacina. 2014. Enhanced bio-inspired microsensor based on microfluidic/bacterial/love wave hybrid structure for continuous control of heavy metals toxicity in liquid medium. Sensors and Actuators B: Chemical 198:278-284.   DOI
118 Garcia, M. Revenga-Parra, L. Anorga, S.Arana, F. Pariente and E. Lorenzo. 2012. Disposable DNA biosensor based on thin-film gold electrodes for selective Salmonella detection. Sensors and Actuators B: Chemical 161(1):1030-1037.   DOI
119 Ghica, M. E., R. C. Carvalho, A. Amine and C. M. A. Brett. 2013. Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt and copper hexacyanoferrate. Sensors and Actuators. B: Chemical 178:270-278.   DOI
120 Han, A., M. Dufva, E. Belleville and C. B. V. Christensen. 2003. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner. Lab on a Chip-Miniaturisation for Chemistry and Biology 3(4):329-332.   DOI
121 Noguera, P. S., G. A. Posthuma-Trumpie, M. V. Tuil, F. J. V. D. Wal, A. Boer, A. Moers and A. V. Amerongen. 2011. Carbon Nanoparticles as Detection Labels in Antibody Microarrays. Detection of Genes Encoding Virulence Factors in Shiga Toxin-Producing Escherichia coli. Analytical Chemistry 83(22):8531-8536.   DOI
122 Yang, Y., H. Tu, A. Zhang, D. Du and Y. Lin. 2012. Preparation and characterization of Au-ZrO2-SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents. Journal of Materials Chemistry 22(11):4977-4981.   DOI
123 Wang, J., C. Timchalk and Y. Lin. 2008. Carbon nanotubebased electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents. Environmental Science & Technology 42(7):2688-2693.   DOI
124 Nayak, M., A. Kotian, S. Marathe and D. Chakravortty. 2009. Detection of microorganisms using biosensors-A smarter way towards detection techniques. Biosensors and Bioelectronics 25:661-667.   DOI
125 Nowak, B., T. Muffling, S. Chaunchom and J. Hartung. 2007. Salmonella contamination in pigs at slaughter and on the farm: A field studyusing an antibody ELISA test and a PCR technique. International Journal of Food Microbiology 115(3):259-267.   DOI
126 Oh, B. K., W. Lee, Y. K. Kim, W. H. Lee and J. W. Choi. 2004. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology 111(1):1-8.   DOI
127 K'Owino, I. and O. A. Sadik. 2005. Impedance spectroscopy:A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101-2113.   DOI
128 Park, M. K., J. W. Park, H. C. Wikle III and B. A. Chin. 2013. Evaluation of phage-based magnetoelastic biosensors for direct detection of Salmonella Typhimurium on spinach leaves. Sensors and Actuators B: Chemical. 176:1134-1140.   DOI
129 Hardy A. 1999. A short history of food poisoning in Britain, circa 1850-1950. Social History of Medicine 12(2):293-311.   DOI
130 Hara-Kudo, Y., H. Konuma, Y. Kamata, M. Miyahara, K. Takatori, Y. Onoue, Y. Sugita-Konishi and T. Ohnishi. 2012. Prevalence of the main food-borne pathogens in retail food under the national food surveillance system in Japan. Food Additives and Contaminants 30(8):1450-1458.