Browse > Article
http://dx.doi.org/10.5389/KSAE.2020.62.5.093

Estimation of DNN-based Soil Moisture at Mountainous Regions  

Chun, Beomseok (Major in Agricultural Civil Engineering, School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
Lee, Taehwa (Major in Agricultural Civil Engineering, School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
Kim, Sangwoo (Major in Agricultural Civil Engineering, School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
Kim, Jonggun (Department of Regional Infrastructure Engineering, Kangwon National University)
Jang, Keunchang (Division of Forest Ecology and Climate Change, National Institute of Forest Science)
Chun, Junghwa (Division of Forest Ecology and Climate Change, National Institute of Forest Science)
Jang, Won Seok (Division of Public Infrastructure Assessment, Environmental Assessment Group, Korea Environment Institute)
Shin, Yongchul (Major in Agricultural Civil Engineering, School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.62, no.5, 2020 , pp. 93-103 More about this Journal
Abstract
In this study, we estimated soil moisture values using the Deep Neural Network(DNN) scheme at the mountainous regions. In order to test the sensitive analysis of DNN scheme, we collected the measured(at the soil depths of 10 cm and 30 cm) soil moisture and DNN input(weather and land surface) data at the Pyeongchang-gun(relatively flat) and Geochang-gun(steep slope) sites. Our findings indicated that the soil moisture estimates were sensitive to the weather variables(5 days-averaged rainfall, 5 days precedent rainfall, accumlated rainfall) and DEM. These findings showed that the DEM and weather variables play the key role in the processes of soil water flow at the mountainous regions. We estimated the soil moisture values at the soil depths of 10 cm and 30 cm using DNN at two study sites under different climate-landsurface conditions. The estimated soil moisture(R: 0.890 and RMSE: 0.041) values at the soil depth of 10 cm were comparable with the measured data in Pyeongchang-gun site while the soil moisture estimates(R: 0.843 and RMSE: 0.048) at the soil depth of 30 cm were relatively biased. The DNN-based soil moisture values(R: 0.997/0.995 and RMSE: 0.014/0.006) at the soil depth of 10 cm/30 cm matched well with the measured data in Geochang-gun site. Although uncertainties exist in the results, our findings indicated that the DNN-based soil moisture estimation scheme demonstrated the good performance in estimating soil moisture values using weather and land surface information at the monitoring sites. Our proposed scheme can be useful for efficient land surface management in various areas such as agriculture, forest hydrology, etc.
Keywords
Deep neural network; soil moisture; weather; land surface; mountainous regions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cai, Y., W. Zheng, X. Zhang, L. Zhangzhong and X. Xue, 2019. Research on soil moisture prediction model based on deep learning. Plos one, 14(4), e0214508. doi:10.1371/journal.prone.0214508.   DOI
2 Engman, E. T., 1991. Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sensing of Environment 35(2-3): 213-226. doi:10.1016/ 0034-4257(91)90013-V.   DOI
3 Entekhabi D., E. G. Njoku, P. E. O'Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R. Piepmeier, R. D. Koster, N. Martin, K. C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. Van Zyl, 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704-716. doi:10.1109/JPROC.2010.2043918.   DOI
4 Entekhabi, D., G. R. Asrar, A. K. Betts, K. J. Beven, R. L. Bras, and C. J. Duffy, 1999. An agenda for land surface hydrology research and a call for the second international hydrological decade. Bulletin of the American Meteorological Society 80(10): 2043-2058. doi:10.1175/1520-0477(1999)080<2043:AAFLSH>2.0.C0;2.   DOI
5 Ines, A. V. M., B. P. Mohanty, and Y. Shin, 2013. An un-mixing algorithm for remotely sensed soil moisture. Water Resource Research 49(1): 408-425. doi:10.1029/2012WR012379.   DOI
6 Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. A. M. J. Martinuzzi, J. Font, and M. Berger, 2001. Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing 39(8): 1729-1735. doi:10.1109/36.942551.   DOI
7 Kim, Y. H., K. J. Kim, S. J. Lee, L. W. Kim, and Y. W. Yang, 2017. Deep learning-based retrieval of daily 500-m soil moisture for South Korea. Journal of the Korean Cartographic Association 17(3): 109-121. doi:10.16879/jkca.2017.17.3.109 (in Korean).   DOI
8 Kingma, D. P., and J. Ba, 2014. Adam: A method for stochastic optimization. In Proc. 3rd International Conference for Learning Representations, arXiv:1412.6980.
9 Lee, C. S., E. Sohn, J. D. Park, and J. D. Jang, 2018. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. GIScience & Remote Sensing 56(1): 43-67. doi:10.1080/15481603.2018.1489943.   DOI
10 McCulloch, W. S., and W. Pitts, 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5(4): 115-133. doi:10.1007/BF02478259.   DOI
11 National Research Council, 1985. Reducing losses from landsliding in the United States. Washington, DC: The National Academies Press. doi:10.17226/19286.
12 NGII (National Geographic Information Institute), 2008. The geography of Korea. The Ministry of Land, Transport and Maritime affairs, National Geographic Information Institute (in Korean).
13 Yang, I. T., K. S. Chun, J. K. Park, and S. Y. Lee, 2007. An estimation to landslide vulnerable area of rainfall condition using GIS. Journal of Korean Society for Geospatial Information System 15(1): 39-46.
14 Shin, Y., and B. P. Mohanty, 2013. Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications. Water Resource Research 49(10): 6208-6228. doi:10.1002/wrce.20495.   DOI
15 Song, X., G. Zhang, F. Liu, D. Li, Y. Zhao and J. Yang, 2016. Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734-748. doi:10.1007/s40333-016-0049-0.   DOI
16 Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(56): 1929-1958.
17 Zhang, H., L. Liao, K. M. Saravanan, P. Yin, and Y. Wei, 2019. DeepBindRG: A deep learning based method for estimating effective protein-ligand affinity. PeerJ 7: e7362. doi:10.7717/peerj.7362.   DOI