Browse > Article
http://dx.doi.org/10.5389/KSAE.2016.58.3.013

Analysis of Indeterminate Truss Structures by Element-Focused Network Approach  

Han, Yicheol (Northeast Regional Center for Rural Development, Pennsylvania State University)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.58, no.3, 2016 , pp. 13-19 More about this Journal
Abstract
Element-focused network analysis method for truss structure is proposed. The propagation process of loads from external loads to connected other elements is similar to that of connections between nodes in accordance with attachment rule in a network. Here nodes indicate elements in a truss structure and edges represent propagated loads. Therefore, the flows of loads in a truss structure can be calculated using the network analysis method, and consequently the structure can also be analyzed. As a first step to analyze a truss structure as a network, we propose a local load transfer rule in accordance with the topology of elements, and then analyze the loads of the truss elements. Application of this method reveal that the internal loads and reactions caused by external loads can be accurately estimated. Consequently, truss structures can be considered as networks and network analysis method can be applied to further complex truss structures.
Keywords
Truss structure; complex networks; network analysis; load flows;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barabasi, A. -L., and R. Albert, 1999. Emergence of Scaling in Random Networks. Science 285: 509-512.
2 Borgatti, S. P., 2005. Centrality and network flow. Social Networks 27: 55-71.   DOI
3 Chu, D. N., Y. M. Xie, A. Hira, and G. P. Steven, 1996. Evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design 21(4): 239-251.   DOI
4 Coleman, T. F., and A. Pothen, 1986. The null space problem I; complexity. SIAM Journal on Algebraic Discrete Methods 7(4): 527-537.   DOI
5 Coleman, T. F., and A. Pothen, 1987. The null space problem II; algorithms. SIAM Journal on Algebraic Discrete Methods 8(4): 544-561.   DOI
6 Denke, P. H., 1962. A general digital computer analysis of statically indeterminate structures. Technical Report. NASATN-D-1666.
7 Dodds, P. S., R. Muhamad, and D. J. Watts, 2003. An Experimental Study of Search in Global Social Networks. Science 301(5634): 827-829.   DOI
8 Freeman, L. C., S. P. Borgatti, and D. R. White, 1991. Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks 13: 141-154.   DOI
9 Freeman, L. C., 1978. Centrality in social networks conceptual clarification. Social Networks 1: 215-223.   DOI
10 Fritsch, M., and M. Kauffeld-Monz, 2010. The impact of network structure on knowledge transfer: an application of social network analysis in the context of regional innovation networks. The Annals of Regional Science 44: 21-38.   DOI
11 Gilbert, J. R., and M. T. Heath, 1987. Computing a sparse basis for the nullspace. SIAM Journal on Algebraic Discrete Methods 8(3): 446-459.   DOI
12 Goh, K. -I., M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabasi, 2007. The human disease network. Proceedings of the National Academy of Sciences of the United States of America 104(21): 8685-8690.   DOI
13 Gurdal, Z., and B. Tatting, 2000. Cellular automata for design of truss structures with linear and nonlinear response. In Proc. 41st AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conf., AIAA Paper.
14 Han, Y., S. J. Goetz, J. J. Lee, and S. Yoon, 2012. Simulating Network Structures Using Bernouilli's Principle. Advances in Complex Systems 15(4): 1250032.   DOI
15 Han, Y., S. J. Goetz, T. Kim, and J. J. Lee, 2013. Estimating Employment-Related Migration from Overlapping Migration and Commuting Networks. Growth and Change 44(3): 474-493.   DOI
16 Henderson, J. C., and C. De, 1960. Topological aspects of structural analysis. Aircraft in Engineering 32: 137-141.   DOI
17 Kaveh, A., and K. Koohestani, 2007. An efficient graph theoretical method for plate bending finite element analysis via force method. Engineering Computations 24(7): 679-698.   DOI
18 Newman, M. E. J., 2004. Fast algorithm for detecting community structure in networks. Physical Review E 69:066133   DOI
19 Kim, T. G., J. J. Lee, and K. Suh, 2014. Development of a Truss Structure Analysis Model based on Cellular Automata and Object-oriented Simulation Environment. Journal of The Korean Society of Agricultural Engineers 56(3):1-9. (in Korean)
20 Lee, H. K., T. G. Kim, and J. J. Lee. 2012. Development of an Object-oriented Finite Element Model through Iterative Method Ensuring Independency of Elements. Journal of The Korean Society of Agricultural Engineers 54(2):115-125. (in Korean)   DOI
21 Querin, O. M., V. Young, G. P. Steven, and Y. M. Xie, 2000. Computational efficiency and validation of bi-directional evolutionary structural optimisation. Computer Methods in Applied Mechanics and Engineering 189(2): 559-573.   DOI
22 Ravasz, E., and A. -L. Barabasi, 2003. Hierarchical organization in complex networks. Physical Review E 67: 026112.   DOI
23 Ravasz, E., A. L. Somera, D. A. Mongru, Z. N. Oltvai, A. -L. Barabasi, 2002. Hierarchical Organization of Modularity in Metabolic Networks. Science 297: 1551-1555.   DOI
24 Smith, D. A., and D. R. White, 1999. Structure and Dynamics of the Global Economy; Network Analysis of International Trade 1965-1980. Social Forces 70(4): 857-893.   DOI
25 Watts, D. J., and S. H. Strogatz, 1998. Collective dynamics of 'small-world' networks. Nature 393: 440-442.   DOI
26 Xie, Y. M., and G. P. Steven, 1993. A simple evolutionary procedure for structural optimization. Computers & Structures 49(5): 885-896.   DOI