Browse > Article
http://dx.doi.org/10.5389/KSAE.2011.53.1.001

The Organization of Spatial Networks by the Velocity of Network Flows  

Han, Yi-Cheol (서울대학교 대학원)
Lee, Jeong-Jae (서울대학교 농업생명과학대학 조경.지역시스템공학부, 서울대학교 농업생명과학연구원)
Lee, Seong-Woo (서울대학교 농업생명과학대학 농경제사회학부, 서울대학교 농업생명과학연구원)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.53, no.1, 2011 , pp. 1-7 More about this Journal
Abstract
The nature of a network implies movement among vertices, and can be regarded as flows. Based on the flow concept which network follows the hydraulic fluid principle, we develop a spatial network model using Bernoulli equation. Then we explore the organization of spatial network and growth by the velocity of network flows. Results show that flow velocity determines network connections or influence of a vertex up to a point, and that the overall network structure is the result of pull force (pressure) and flow velocity. We demonstrate how one vertex can monopolize connections within a network.
Keywords
Complex networks; network flow; spatial structure; network velocity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gastner, M. T. and M. E. J. Newman, 2006. The spatial structure of networks. The European Physical Journal B 49: 247-252.   DOI
2 Goetz, S. J., Y. Han, J. L. Findeis and K. J. Brasier, 2010. US Commuting Networks and Economic Growth: Measurement and Implications for Spatial Policy. Growth and Change 41(2): 276-302.   DOI
3 Gonzalez, M., C. A. Hidalog and A. -L. Barabási, 2008. Understanding individual human mobility patterns. Nature 453: 779-782.   DOI
4 Liu, F. and Q. Zhao, 2006. An efficient organization mechanism for spatial networks. Physica A 366: 608 -618.
5 Masucci, A. P. and G. J. Rodgers, 2008. The network of commuters in London. Physica A 387: 3781-3788.   DOI
6 Newman, M. E. J., 2005. A measure of betweenness centrality based on random walks. Social Networks 27: 39-54.   DOI
7 Patuelli, R., A. Reggiani, S. P. Gorman, P. Nijkamp and F. -J. Bade, 2007. Network Analysis of Commuting Flows: A Comparative Static Approach to German Data. Network Spatial Economics 7: 315-331.   DOI
8 Tutzauer, F., 2007. Entropy as a measure of centrality in networks characterized by path-transfer flow. Social Networks 29: 249-265.   DOI
9 Albert, R. and A. -L. Barabasi, 2000. Topology of Evolving Networks: Local Events and University. Physical Review Letters 85(24): 5234-5237.   DOI
10 Barabási, A. -L. and R. Albert, 1999. Emergence of Scaling in Random Networks. Science 285: 509-512.
11 Barthelemy, M. and A. Flammini, 2006. Optimal traffic networks. Journal of Statistical Mechanics: Theory and Experiment L07002.
12 Boccaletti, S., V. Latora, Y. Moreno, M. Chavez and D. -U. Hwang. 2006. Complex networks: Structure and dynamics. Physics Reports 424: 175-308.   DOI
13 Borgatti, S. P. and M. G. Everett, 2006. A Graphtheoretic perspective on centrality. Social Networks 28: 466-484.   DOI
14 Borgatti, S. P., 2005. Centrality and network flow. Social Networks 27: 55-71.   DOI
15 Freeman, L. C., S. P. Borgatti and D. R. White, 1991. Centrality in valued graphs: a measure of betweenness based on network flow. Social Networks 13: 141-154.   DOI
16 Bianconi, G. and A. -L. Barabási, 2001b. Bose-Einstein Condensation in Complex Networks. Physical Review Letters 86(24): 5632-5635.   DOI
17 Bianconi, G. and A. -L. Barabasi, 2001a. Competition and multiscaling in evolving networks. Europhysics Letters 54: 436-442.   DOI