Browse > Article
http://dx.doi.org/10.48022/mbl.2111.11010

Challenging the Hypothesis of de novo Biosynthesis of Bile Acids by Marine Bacteria  

Tueros, Felipe Gonzalo (Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark)
Ellabaan, Mostafa M. Hashim (Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark)
Henricsson, Marcus (Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital)
Vazquez-Uribe, Ruben (Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark)
Backhed, Fredrik (Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital)
Sommer, Morten Otto Alexander (Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.1, 2022 , pp. 102-109 More about this Journal
Abstract
Bile acids are essential molecules produced by vertebrates that are involved in several physiological roles, including the uptake of nutrients. Bacterial isolates capable of producing bile acids de novo have been identified and characterized. Such isolates may provide access to novel biochemical pathways suitable for the design of microbial cell factories. Here, we further characterized the ability of Maribacter dokdonensis, Dokdonia donghaensis, and Myroides pelagicus to produce bile acids. Contrary to previous reports, we did not observe de novo production of bile acids by these isolates. Instead, we found that these isolates deconjugated the amino acid moiety of bile acids present in the growth medium used in previous reports. Through genomic analysis, we identified putative bile salt hydrolases, which could be responsible for the different bile acid modifications observed. Our results challenge the hypothesis of de novo microbial bile acid production, while further demonstrating the diverse capacity of bacteria to modify bile acids.
Keywords
Bile acids; bile salt hydrolase; marine bacteria; bile acid modification; bile acid production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29: 2607-2618.   DOI
2 Panigrahi P, Sule M, Sharma R, Ramasamy S, Suresh, CG. 2014. An improved method for specificity annotation shows a distinct evolutionary divergence among the microbial enzymes of the cholylglycine hydrolase family. Microbiology 160: 1162-1174.   DOI
3 Hofmann AF, Hagey LR, Krasowski MD. 2010. Bile salts of vertebrates: structural variation and possible evolutionary significance. J. Lipid Res. 51: 226-246.   DOI
4 Bowlus CL. 2016. Obeticholic acid for the treatment of primary biliary cholangitis in adult patients: clinical utility and patient selection. Hepat. Med. 8: 89-95.   DOI
5 Maneerat S, Nitoda T, Kanzaki H, Kawai F. 2005. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Cell Physiol. 67: 679-683.
6 Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36.   DOI
7 Price MN, Dehal PS, Arkin AP. 2009. FastTree: Computing large minimum-evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26: 1641-1650.   DOI
8 Kim SH, Yang HO, Sohn YC, Kwon HC. 2010. Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int. J. Syst. Evol. Microbiol. 60: 2793-2798.   DOI
9 Russell DW, Setchell KDR. 1992. Bile acid biosynthesis. Biochemistry 31: 4737-4749.   DOI
10 Foley MH, Flaherty SO, Barrangou R, Theriot CM. 2019. Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 15: e1007581.   DOI
11 Kim D, Kim J, Kang SJ, Yoon JH, Kim WG, Lee JS, et al. 2007. Biosynthesis of bile acids in a variety of marine bacteria taxa. J. Microbiol. Biotechnol. 17: 403-407.
12 Hofmann AF. 1999. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159: 2647-2658.   DOI
13 Kim DJ, Yoon S, Ji SC, Yang J, Kim YK, Lee S, et al. 2018. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci. Rep. 8: 11874.   DOI
14 Passed A, Lang S, Wagner F, Wray V. 1991. Anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. Naturforsch 46c: 204-209.
15 Tremaroli V, Karlsson F, Werling M, Stahlman M, KovatchevaDatchary P, Olbers T, et al. 2015. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22: 228-238.   DOI
16 Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47: W636-W641.   DOI
17 Li H, Shinde PB, Lee HJ, Yoo ES, Hong J, Choi SH, et al. 2009. Bile acid derivatives from a sponge-associated bacterium. Arch. Pharm. Res. 32: 857-862.   DOI
18 Ohashi K, Miyagawa Y, Nakamura Y, Shibuya H. 2008. Bioproduction of bile acids and the glycine conjugates by Penicillium fungus. J. Nat. Med. 62: 83-86.   DOI
19 Park SC, Kim CJ, Uramoto M, Yun HI, Yoon KH, Oh TK. 1995. Antibacterial substance produced by Streptococcus faecium under anaerobic culture. Biosci. Biotechnol. Biochem. 59: 1966-1967.   DOI
20 Valle F, Balbas P, Merino E, Bollvar F. 1991. The role of penicillin amidases in nature and in industry. Trends Biochem. Sci. 16: 36-40.   DOI
21 Kim SH, Yang HO, Shin YK, Kwon HC. 2012. Hasllibacter halocynthiae gen. nov., sp. nov., a nutriacholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int. J. Syst. Evol. Microbiol. 62: 624-631.   DOI
22 Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105: 13580-13585.   DOI
23 Hofmann AF, Hagey LR. 2008. Review bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci. 65: 2461-2483.   DOI
24 Hill C, Gahan CGM. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738.   DOI