Browse > Article
http://dx.doi.org/10.48022/mbl.2104.04002

Molecular Cloning, Protein Expression, and Regulatory Mechanisms of the Chitinase Gene from Spodoptera littoralis Nucleopolyhedrovirus  

Yasser, Norhan (Agricultural Genetic Engineering Research Institute, ARC)
Salem, Reda (Agricultural Genetic Engineering Research Institute, ARC)
Alkhazindar, Maha (Faculty of Science, Cairo University)
Abdelhamid, Ismail A. (Faculty of Science, Cairo University)
Ghozlan, Said A.S. (Faculty of Science, Cairo University)
Elmenofy, Wael (Agricultural Genetic Engineering Research Institute, ARC)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.3, 2021 , pp. 305-315 More about this Journal
Abstract
The cotton leafworm, Spodoptera littoralis, is a major pest in Egypt and many countries worldwide, and causes heavy economic losses. As a result, management measures to control the spread of the worm are required. S. littoralis nucleopolyhedrovirus (SpliNPV) is one of the most promising bioagents for the efficient control of insect pests. In this study, a chitinase gene (chitA) of a 1.8 kb DNA fragment was cloned and fully characterized from SpliNPV-EG1, an Egyptian isolate. A sequence of 601 amino acids was deduced when the gene was completely sequenced with a predicted molecular mass of 67 kDa for the preprotein. Transcriptional analyses using reverse transcription polymerase chain reaction (RT-PCR) revealed that chitA transcripts were detected first at 12 h post infection (hpi) and remained detectable until 168 hpi, suggesting their transcriptional regulation from a putative late promoter motif. In addition, quantitative analysis using quantitative RT-PCR showed a steady increase of 7.86-fold at 12 hpi in chitA transcription levels, which increased up to 71.4-fold at 120 hpi. An approximately 50 kDa protein fragment with chitinolytic activity was purified from ChitA-induced bacterial culture and detected by western blotting with an anti-recombinant SpliNPV chitinase antibody. Moreover, purification of the expressed ChitA recombinant protein showed in vitro growth inhibition of two different fungi species, Fusarium solani and F. oxysporum, confirming that the enzyme assembly and activity was correct. The results supported the potential role and application of the SpliNPV-ChitA protein as a synergistic agent in agricultural fungal and pest control programs.
Keywords
Spodoptera littoralis NPV; chitinase gene A; qRT-PCR; protein expression; antifungal activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang H, Wu D, Deng F, Peng H, Chen X, Lauzon H, et al. 2004. Characterization and phylogenetic analysis of the chitinase gene from the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Virus Res. 100: 179-189.   DOI
2 Kumar B. 2016. Biocontrol of insect pests (Ch.2). pp. 25-61. In: Ecofriendly pest management for food security (Editor: Omkar). Academic Press, India.
3 Hyink O, Dellow RA, Olsen MJ, Caradoc-Davies KM, Drake K, Herniou EA, et al. 2002. Whole genome analysis of the Epiphyas postvittana nucleopolyhedrovirus. J. Gen. Virol. 83: 957-971.   DOI
4 Salem R, El-Kholy AA, Ibrahim M. 2019. Eight novel single chain antibody fragments recognizing VP2 of foot-and-mouth disease virus serotypes A, O, and SAT 2. Virology 533: 145-154.   DOI
5 Atia MA, Osman GH, Elmenofy WH. 2016. Genome-wide in silico analysis, characterization and identification of microsatellites in Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV). Sci. Rep. 6: 33741.   DOI
6 Salem R, Assem KS, Omar AO, Khalil AA, Basry AM, Waly RF, et al. 2020. Expressing the immunodominant projection domain of infectious bursal disease virus fused to the fragment crystallizable of chicken IgY in yellow maize for a prospective edible vaccine. Mol. Immunol. 118C: 132-141.
7 Saville GP, Patmanidi AL, Possee RD, King LA. 2004. Deletion of the Autographa californica nucleopolyhedrovirus chitinase KDEL motif and in vitro and in vivo analysis of the modified virus. J. Gen. Virol. 85: 821-831.   DOI
8 Breitenbacha JE, El-Sheikha A, Harrison RB, Rowleyb DL, Sparksb ME, Gundersen-Rindalb DE, et al. 2013. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res. 171: 194-208.   DOI
9 Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.   DOI
10 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
11 Salmaninezhad F, Mostowfizadeh-Ghalamfarsa R. 2019. Three new pythium species from rice paddy fields. Mycologia 111: 274-290.   DOI
12 Kang W, Tristem M, Maeda S, Crook NE, O'Reilly DR. 1998. Identification and characterization of the Cydia pomonella granulovirus cathepsin and chitinase genes. J. Gen. Virol. 79: 2283-2292.   DOI
13 Zhang D, Chen J, Yao Q, Pan Z, Chenet J, Zhang W. 2012. Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem. 79: 220-234.   DOI
14 Kasprzewska A. 2003. Plant chitinases-regulation and function. Cell Mol. Biol. Lett. 8: 809-824.
15 Abdallah NA, El-Menofy W, Abdelhadi AA. 2017. Designing of a recombinant Agip-bacmid construct with infectious properties against black cutworm Agrotis ipsilon larvae. Appl. Biochem. Biotechnol. 183: 307-317.   DOI
16 Saville GP, Thomas CJ, Possee RD, King LA. 2002. Partial redistribution of the Autographa californica nucleopolyhedrovirus chitinase in virus-infected cells accompanies mutation of the carboxy-terminal KDEL ER-retention motif. J. Gen. Virol. 83: 685-694.   DOI
17 Li Q, Donly C, Li L, Willis LG, Theilmann DA, Erlandson M. 2002. Sequence and organization of the Mamestra configurate nucleopolyhedrovirus genome. Virology 294: 106-121.   DOI
18 Frigerio L, Pastres A, Prada A, Vitale A. 2001. Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: Selective use of an alternative route to vacuoles. Plant Cell 13: 1109-1126.   DOI
19 Stuart E, Reynolds, Richard I, Samuels. 1996. Physiology and biochemistry of insect moulting fluid. Adv. Insect Physiol. 26: 157-232.   DOI
20 Filho BP, Lemos FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF. 2002. Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: a chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem. Mol. Biol. 32: 1723-1729.   DOI
21 Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. 2008. Functional specialization among insect Chitinase family genes revealed by RNA interference. PNAS 105: 6650-6655.   DOI
22 Takahashi M, Kiuchi M, Kamimura M. 2002. A new chitinase-related gene, BmChiR1, is induced in the Bombyx mori anterior silk gland at molt and metamorphosis by ecdysteroid. Insect Biochem. Mol. Biol. 32: 147-151.   DOI
23 Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidouet N, Miyashita K, et al. 2006. Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci. Biotechnol. Biochem. 70: 988-998.   DOI
24 Xu H, He L, Xiao W, Shen G. 2017. Identification of the key chitinase genes in Tetranychus cinnabarinus (Boisduval) based on the expression and sequence characteristic analysis. J. Integr. Agric. 16: 892-899.   DOI
25 Oh S, Kim DH, Bharat BP, Patnaik BB, Jo YH, Noh MY, et al. 2013. Molecular and immunohistochemical characterization of the chitinase gene from Pieris rapae granulovirus. Arch. Virol. 158: 1701-1718.   DOI
26 Schoffelmeer EA, Klis FM, Sietsma JH, Cornelissen BJ. 1999. The cell wall of Fusarium oxysporum. Fungal Genet. Biol. 27: 275-282.   DOI
27 Theilmann DA, Blissard GW, Bonning B, Jehle J, O'Reilly DR, Rohrmann GF, et al. 2005. "Baculoviridae" Eighth report of the international committee on taxonomy of viruses. pp. 177-185. Van Regenmortel HV, Bishop DHL, Van Regenmortel MH, Fauquet CM (eds.), Elsevier Academic Press, New York, USA.
28 van Oers MM, Pijlman GP, Vlak JM. 2015. Thirty years of baculovirusinsect cell protein expression: From dark horse to mainstream technology. J. Gen. Virol. 96: 6-23.   DOI
29 Elgaied L, Salem R, Elmenofy W. 2017. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen. 3 Biotech. 7: 269.   DOI
30 Elmenofy W, Mohamed I, El-Gaied L, Salem R, Osman G, Ibrahim M. 2020. Expression of 1B capsid protein of Foot-and-mouth disease virus (FMDV) using baculovirus expression system and its validation in detecting SAT 2- specific antisera. Peer J. 8: e8946.   DOI
31 El-Menofy W, Osman G, Assaeedi A, Salama M. 2014. A novel recombinant baculovirus overexpressing a Bacillus thuringiensis Cry1Ab toxin enhances insecticidal activity. Biol. Proced. Online 16: 7.   DOI
32 Elmenofy WH, Jehle AJ. 2015. Possible functional co-operation of palindromes hr3 and hr4 in the genome of Cydia pomonella granulovirus affects viral replication capacity. J. Gen. Virol. 96: 2888-22897.   DOI
33 Moscardi F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44: 257-289.   DOI
34 Seufi AM. 2008. Characterization of an Egyptian Spodoptera littoralis nucleopolyhedrovirus and a possible use of a highly conserved region from polyhedrin gene for nucleopolyhedrovirus detection. Virol. J. 5: 13.   DOI
35 Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206: 4393-4412.   DOI
36 Thomas CJ, Gooday GW, King LA, Possee RD. 2000. Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. J. Gen. Virol. 81: 1403-1411.
37 Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, et al. 1997. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238: 243-253.   DOI
38 Hughes AL, Friedman R. 2003. Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol. Biol. Evol. 20: 979-987.   DOI
39 Hawtin RE, Arnold K, Ayres MD, Zanotto PM, Howard SC, Gooday GW, et al. 1995. Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212: 673-685.   DOI
40 Daimon T, Katsuma S, Kang W, Shimada T. 2006. Comparative studies of Bombyx mori nucleopolyhedrovirus chitinase and its host ortholog, BmChi-h. Biochem. Biophys. Res. Commun. 345: 825-833.   DOI
41 Ivaldi-Sender C. 1974. Techniques simples pour elevage permanent de la tordeuse orientale, Grapholita molesta (Lep., Tortricdae), sur milieu artificiel. Ann. Zoo Ecol. Anim. 6: 337-343.
42 Tharanathan RN, Kittur FS. 2003. Chitin-The undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43: 61-87.   DOI
43 Ahrens CH, Russell RL, Funk CJ, Evans JT, Harwood SH, Rohrmann GF. 1997. The sequence of the Orgyia pseudosugata multi nucleocapsid nuclear polyhedrosis virus genome. Virology 229: 381-399.   DOI
44 Vaaje-Kolstad G, Douglas RH, Francesco VR, Martin GP, Bjornar S, Daan MF, et al. 2004. Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochim. Biophys. Acta 1696: 103-111.   DOI
45 Fang M, Wang H, Wang H, Yuan L, Chen X, Vlak JM, et al. 2003. Open reading frame 94 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel conserved occlusion-derived virion protein, ODV-EC43. J. Gen. Virol. 84: 3021-3027.   DOI
46 He L, Yu H, Xu CY, Zhao Y, Yang FX, Guo YD, et al. 2019. Molecular characterization, activity analysis and transcriptional detection of chitinases encoded in the genome of Spodoptera exigua. J. ASIA-PAC Entomol. 22: 499-505.   DOI
47 Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. 1994. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586-605.   DOI
48 Chen X, Ijkel WF, Tarchini R, Sun X, Sandbrink H, Wang H, et al. 2001. The sequence of the Helicoverpa armigera single nucleocapsids nucleopolyhedrovirus genome. J. Gen. Virol. 82: 241-257.   DOI