Browse > Article
http://dx.doi.org/10.48022/mbl.2102.02008

Enhancement of Ethanol Productivity with Saccharomyces cerevisiae by Overexpression of Lipid Elongation Gene Using CRISPR/CAS9  

Kim, JinA (Department of Biotechnology, Pukyong National University)
Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.2, 2021 , pp. 210-216 More about this Journal
Abstract
This study aimed to enhance ethanol productivity of Saccharomyces cerevisiae through genome editing using CRISPR/CAS9. To increase ethanol productivity, ACC1, ELO1, and OLE1 were overexpressed in S. cerevisiae using the CRISPR/CAS9 system. The strains overexpressing ACC1, ELO1, and OLE1 survived up to 24 h in YPD medium supplemented with 18% ethanol. Moreover, the ethanol yields in strains overexpressing ACC1 (428.18 mg ethanol/g glucose), ELO1 (416.15 mg ethanol/g glucose), and OLE1 (430.55 mg ethanol/g glucose) were higher than those in the control strains (400.26 mg ethanol/g glucose). In conclusion, the overexpression of these genes increased the viability of S. cerevisiae at high ethanol concentrations and the ethanol productivity without suppressing glucose consumption.
Keywords
Ethanol fermentation; ethanol tolerance; lipid elongation gene; ethanol productivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Salgueiro SP, Correia IS, Novais JM. 1988. Ethanol-induced leakage in Saccharomyces cerevisiae: Kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Environ. Microbiol. 54: 903-909.   DOI
2 Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I. 2009. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl. Environ. Microbiol. 75: 5761-5772.   DOI
3 Li P, Fu X, Zhang L, Li S. 2019. CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE1 in thermotolerance. Microbiol. Biotechnol. 12: 1154-1163.   DOI
4 Torija MJ, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, et al. 2003. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 85: 127-136.   DOI
5 Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, et al. 2015. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81: 1601-1609.   DOI
6 Dong SJ, Yi CF, Li H. 2015. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Int. J. Biochem. Cell Biol. 69: 196-203.   DOI
7 Caspeta L, Castillo T, Nielsen J. 2015. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front. Bioeng. Biotechnol. 3:184.   DOI
8 van Uden N. 1985. Chapter 2 - Ethanol toxicity and ethanol tolerance in yeasts. Ann. Rep. Ferment. Processes 8: 11-58.   DOI
9 Lewis JA, Elkon IM, McGee MA, Gasch AP. 2010. Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186: 1197-1205.   DOI
10 Yan GL, Duan LL, Liu PT, Duan CQ. 2019. Transcriptional comparison investigating the influence of the addition of unsaturated fatty acids on aroma compounds during alcoholic fermentation. Front. Microbiol. 10: 1115.   DOI
11 Alexandre H, Rousseaux I, Charpentier C. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculate. FEMS Microbiol. Lett. 124: 17-22.   DOI
12 Kajiwara S, Aritomi T, Suga K, Ohtaguchi K, Kobayashi O. 2000. Overexpression of the OLE1gene enhances ethanol fermentation by Saccharomyces cerevisiae. Microbiol. Biotechnol. 53: 568-574.   DOI
13 Dittrich F, Zajonc D, Huhne K, Hoja U, Ekici A, Greiner E, et al. 1988. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252: 477-485.   DOI
14 Chin YW, Kang WK, Jang HW, Turner TL, Kim HJ. 2016. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 43: 1517-1525.   DOI
15 Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenerg. 47: 395-401.   DOI
16 Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK. 2013. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresour. Technol. 135: 490-499.   DOI
17 Mojovic L, Pejin D, Rakin M, Pejin J, Nikolic S, Djukic-Vukovic A. 2012. How to improve the economy of bioethanol production in Serbia. Renew. Sustain. Energ. Rev. 16: 6040-6047.   DOI
18 Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. 2017. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth. Syst. Biotechnol. 2: 219-225.   DOI
19 Ingram LO. 1990. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9: 305-319.   DOI
20 Wheals AE, Basso LC, Alves DMG, Amorim HV. 1999. Fuel ethanol after 25 years. Trends Biotechnol. 17: 482-487.   DOI
21 Tehlivets O, Scheuringer K, Kohlwein SD. 2007. Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta 1771: 255-270.   DOI
22 Schirmaier F, Philippsen P. 1984. Identification of two genes coding for the translation elongation factor EF-la of S. cerevisiae. EMBO J. 3: 3311-3315.   DOI
23 Stovicek V, Borodina I, Forste Jn. 2015. CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun. 2: 13-22.   DOI
24 Kitamoto N, Matsui J, Kawai Y, Kato A, Yoshino S, Ohmiya K, et al. 1998. Utilization of the TEF1-α gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB in Aspergillus oryzae. Microbiol. Biotechnol. 50: 85-92.   DOI
25 Wang Y, Zhang S, Liu H, Zhang L, Yi C, Li H. 2015. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Basic Microbiol. 55: 1417-1426.   DOI
26 Beaven MJ, Charpentier C, Rose AH. 1982. Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J. Gen. Microbiol. 128: 1447- 1455.
27 Liu Y, Nielsen J. 2019. Recent trends in metabolic engineering of microbial chemical factories. Curr. Opin. Biotechnol. 60: 188-197.   DOI
28 Balat M, Balat H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86: 2273-2282.   DOI
29 Zhao XQ, Bai FW. 2009. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production J. Biotechnol. 144: 23-30.   DOI
30 Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AA, et al. 2017. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 10: 52-61.   DOI
31 Casey GP, Ingledew WM. 1985. Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 13: 219-280.   DOI
32 Bharti B, Madhulika C. 2016. Bioethanol production using Saccharomyces cerevisiae with different perspectives: Substrates, growth variables, inhibitor reduction and immobilization. Ferment. Technol. 5: 131-134.