Browse > Article
http://dx.doi.org/10.4014/mbl.1812.12003

Optimization and Molecular Characterization of Exoelectrogenic Isolates for Enhanced Microbial Fuel Cell Performance  

Nwagu, Kingsley Ekene (Department of Biology/Microbiology/Biotechnology, Faculty of Science, Alex Ekwueme Federal University Ndufu Alike Ikwo)
Ekpo, Imo A. (Department of Genetics and Biotechnolgy, Faculty of Biological Science, University of Calabar)
Ekaluo, Benjamin Utip (Department of Genetics and Biotechnolgy, Faculty of Biological Science, University of Calabar)
Ubi, Godwin Michael (Department of Genetics and Biotechnolgy, Faculty of Biological Science, University of Calabar)
Elemba, Munachimso Odinakachi (Department of Biology/Microbiology/Biotechnology, Faculty of Science, Alex Ekwueme Federal University Ndufu Alike Ikwo)
Victor, Uzoh Chukwuma (Department of Biology/Microbiology/Biotechnology, Faculty of Science, Alex Ekwueme Federal University Ndufu Alike Ikwo)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.4, 2019 , pp. 621-629 More about this Journal
Abstract
In this study we attempted to screen bacteria and fungi that generate electricity while treating wastewater using optimized double-chamber microbial fuel cell (MFC) system parameters. Optimization was carried out for five best exoelectrogenic isolates (two bacteria and three fungi) at pH values of 6.0, 7.5, 8.5, and 9.5, and temperatures of 30, 35, 40, and 45℃; the generated power densities were measured using a digital multimeter (DT9205A). The isolates were identified using molecular characterization, followed by the phylogenetic analysis of isolates with known exoelectrogenic microorganisms. The bacterium, Proteus species, N6 (KX548358.1) and fungus, Candida parapsilosis, S10 (KX548360) produced the highest power densities of 1.59 and 1.55 W/m2 (at a pH of 8.5 and temperatures of 35 and 40℃) within 24 h, respectively. Other fungi-Clavispora lusitaniae, S9 (KX548359.1) at 40℃, Clavispora lusitaniae, S14 (KX548361.1) at 35℃-and bacterium-Providencia species, N4 (KX548357.1) at 40℃-produced power densities of 1.51, 1.46, and 1.44 W/m2, respectively within 24 h. The MFCs achieved higher power densities at a pH of 8.5, temperature of 40℃ within 24 h. The bacterial isolates have a close evolutionary relationship with other known exoelectrogenic microorganisms. These findings helped us determine the optimal pH, temperature, evolutionary relationship, and exoelectrogenic fungal species other than bacteria that enhance MFC performance.
Keywords
Exoelectrogenic isolates; optimization; pH; phylogenetic tree; power density; temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abhilasha SM, Sharma VN. 2009. Production from various wastewaters through microbial fuel cell technology. J. Biochem. Techol. 2: 133-137.
2 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
3 Behera M, Murthy SS, Ghangrekar MM. 2011. Effect of operating temperature on performance of microbial fuel cell. Water Sci. Technol. 64: 917-922.   DOI
4 Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482.   DOI
5 Franks AE, Nevin KP. 2010. Microbial fuel cells; a current review. Energies 3: 899-919.   DOI
6 Hall TA. 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
7 He Z, Huang Y, Manohar AK, Mansfeld F. 2008. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an aircathode microbial fuel cell. Bioelectrochemistry 74: 78-82.   DOI
8 Karmakar S, Kundu K, Kundu S. 2010. Design and Development of Microbial Fuel cells. pp. 1029-1034. In Current Research, Technology and Education Topic in Applied Microbiology and Microbial Biotechnology.
9 Katoh K, Frith MC. 2012. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28: 3144-3146.   DOI
10 Kudipudi S, Allam AR, Sridhar GR, Srinubabu G. 2008. Methodology for phylogenetic tree construction. J. Proteomics Bioinform. 1: 5-11.
11 Li B, Scheible K, Curtis M. 2011. Electricity generation from anaerobic wastewater treatment in microbial fuel cell. Water Environ. Res. 11095: 1-62.
12 Li LH, Sun YM, Yuan ZH, Kong XY, Li Y. 2013. Effect of temperature on power generation of microbial fuel cell. Environ. Technol. 34: 1929-1934.   DOI
13 Pratima G, Piyush P, Komal J, Anjali M, Jasjeet KB, Lalit NM. 2012. Comparative study of microbial fuel cell for electricity generation by enriched exoelectron generating bacteria from environmental samples. Asian J. Biotechnol. 42: 137-142.
14 Zhang ER, Liu L, Cui YY. 2013. Effect of PH on the performance of the anode in microbial fuel cells. Adv. Mat. Res. 608: 884-888.   DOI
15 Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991.16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
16 White TJ, Bruns T, Lee S, Taylor S. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322, In Inni MA, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR Protocols: a guide to methods and applications. New York, NY: Academic Press.
17 Xing D, Zuo Y, Cheng S, Regan JM, Logan BE. 2008. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42: 4146-4151.   DOI
18 Zuo Y, Maness PC, Logan BE. 2008. Electricity production from steam exploded corn stover biomass. Energy Fuels. 20: 1716-1721.
19 Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J. et al. 2011. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 196: 5402-5407.   DOI
20 Sebastia P, Marc S, Marta C, Marina C, Dolors MB, Jesus C. 2010. Effect of pH on nutrient dynamics and electricity production using microbialfuel cells. Biores. Technol. 101 : 9594-9599.   DOI
21 Burge C, Karlin S. 1997. Prediction of complete gene structure in human genomic DNA. J. Mol. Biol. 268: 78-94.   DOI
22 Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375-381.   DOI
23 Padma S, Dirk BH. 2012. Microbial fuel cells: Future fuel technologies, National Petroleum Council (NPC) Study, Paper 13.
24 Cheng S, Xing D, Logan BE. 2011. Electricity generation of singlechamber microbial fuel cells at lowtemperatures. Biosens. Bioelectron. 26: 1913-1917.   DOI
25 Mahendra BG, Mahavarkar S. 2013. Treatment of wastewater and electricity generation using microbial fuel cell technology. Int. J. Res. Eng. Technol. 1: 277-282.
26 Muralidharan A, Ajay Babu OK, Nirmalraman K, Ramya M. 2011. Impact of salt concentration on electricity production in microbial hydrogen based salt bridge fuel Cells. Indian J. Fundam. Appl. L. Sci. 1: 178-184.
27 Mustakeem. 2015. Electrode materials for microbial fuel cells: nanomaterial approach. Mater. Renew. Sustain. Energy 4: 22.   DOI
28 Osman MH, Shah AA, Walsh FC. 2010. Recent progress and continuing challenges in bio fuel cells. Part II: Microbial. Biosens. Bioelectron. 26: 953-963.   DOI
29 Page RDM. 1996. TreeView: An application to display phylogenetic trees on personal computer. Comput. Appl. Biosci. 12: 357-358.
30 Pant D, Van Bogaert G, De Smet M, Diels L, Vanbroekhoven K. 2010. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochem. Acta 55: 7710-7716.   DOI
31 Park T, Ding W, Chend S, Brar MS, Ma AP, Tun HM, et al. 2014. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp). AMB Express 4: 22.   DOI
32 Watson VJ, Logan BE. 2010. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol. Bioeng. 105: 489-498.   DOI
33 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
34 Madigan MT. 2012. Brock Biology of Microorganisms. 13th ed. San Francisco: Benjamin Cummings.