Browse > Article
http://dx.doi.org/10.4014/mbl.1811.11011

Characterization of Alpha-Amylase from Aspergillus niger Aggregate F Isolated from a Fermented Cassava Gatot Grown in Potato Peel Waste Medium  

Angelia, Cindy (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Sanjaya, Astia (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Aida, Aida (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Tanudjaja, Ellen (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Victor, Hans (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Cahyani, Antari Daru (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Tan, Tjie Jan (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Pinontoan, Reinhard (Biology Department, Faculty of Science and Technology, Universitas Pelita Harapan)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.3, 2019 , pp. 364-371 More about this Journal
Abstract
The use of GRAS microorganisms isolated from fermented foods during amylase production using an economical food-waste medium provides more opportunities to produce amylase with a wider range of applications. Hence, this study aimed to isolate a good amylase-producing fungi from the traditional Indonesian fermented cassava, gatot, and to identify the amylase-producing capability of the isolate in a potato peel waste (PPW) medium. Black-colored fungi isolated from gatot was morphologically identified and the amylase produced was characterized using SDS-PAGE and Native PAGE. The isolate was then grown on PPW medium, and the amylase produced was further characterized. Morphological identification and enzyme characterization revealed that the Aspergillus niger aggregate F isolated from gatot secreted an active extracellular ${\alpha}$-amylase with an optimum pH of 5-6. In conclusion, Aspergillus niger aggregate F isolated from gatot can be used to produce ${\alpha}$-amylase using PPW as a medium.
Keywords
Alpha-amylase; Aspergillus niger; fermented cassava gatot; potato peel waste;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dhital S, Warren FJ, Butterworth PJ, Ellis PR, Gidley MJ. 2017. Mechanisms of starch digestion by ${\alpha}$-amylase-Structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 57: 875-892.   DOI
2 Xu Q-S, Yan Y-S, Feng J-X. 2016. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol. Biofuels 9: 216-234.   DOI
3 Renge VC, Khedkar SV, Nandukar NR. 2012. Enzyme synthesis by fermentation method: A review. Sci. Rev. Chem. Commun. 2: 585-590.
4 Chidan Kumar CS, Chandraju S, Mythily R, Ahmad T, Made Gowda NM. 2012. Extraction of sugars from black gram peels by reversed-phase liquid chromatography systems and identification by TLC and mass analysis. Adv. Anal. Chem. Sci. Acad. Publ. 2: 32-36.   DOI
5 Astriani A, Diniyah N, Jayus J, Nurhayati N. 2018. Phenotypic identification of indigenous fungi and lactic acid bacteria isolated from 'gatot' an Indonesian fermented food. Biodiversitas 19: 947-954.   DOI
6 Gautam AK, Bhadauria R. 2012. Characterization of Aspergillus species associated with commercially stored triphala powder. Afr. J. Biotechnol. 11: 16814-16823.
7 Samson RA, Pitt JI. 1986. Advances in Penicillium and Aspergillus Systematics. p. 60, Springer US, Boston, MA.
8 Sidkey N, Abo-Shadi M, Balahmar R, Sabry R, Badrany G. 2011. Purification and characterization of ${\alpha}$-amylase from a newly isolated Aspergillus flavus F 2 Mbb. Int. Res. J. Microbiol. 2: 96-103.
9 McClenny N. 2005. Laboratory detection and identification of Aspergillus species by microscopic observation and culture: the traditional approach. Med. Mycol. 43: 125-128.   DOI
10 Silva DM, Batista LR, Rezende EF, Fungaro MHP, Sartori D, Alves E. 2011. Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Braz. J. Microbiol. 42: 761-773.   DOI
11 Ciloci A, Bivol C, Stratan M, Reva V, Clapco S, Tiurin S, et al. 2012. Production and purification of ${\alpha}$-amylase from Aspergillus niger 33-19 CNMN FD 02a mutant form. Analele Univ. Din Oradea Fasc. Biol. 19: 74-79.
12 Derakshan FK, Darvishi F, Dezfulian M, Madzak C. 2017. Expression and characterization of glucose oxidase from Aspergillus niger in Yarrowia lipolytica. Mol. Biotechnol. 59: 307-314.   DOI
13 Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, et al. 2011. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6: 1-6.
14 Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. 2003. Microbial ${\alpha}$-amylases: a biotechnological perspective. Process Biochem. 38: 1599-1616.   DOI
15 Passamani FRF, Hernandes T, Lopes NA, Bastos SC, Santiago WD, Cardoso M das G, et al. 2014. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes. J. Food Prot. 77: 1947-1952.   DOI
16 Fakir MSA, Jannat M, Mostafa MG, Seal H. 2012. Starch and flour extraction and nutrient composition of tuber in seven cassava accessions. J. Bangladesh Agric. Univ. 10: 217-222.   DOI
17 Mahmood S, Shahid MG, Nadeem M, Irfan M, Syed Q. 2016. Production and optimization of ${\alpha}$-amylase from Aspergillus niger using potato peel as substrate. Pak. J. Biotechnol. 13: 101-109.
18 Sepelev I, Galoburda R. 2015. Industrial potato peel waste application in food production: a review. Res. Rural Dev. 1: 130-136.
19 Xu H, Sun L, Zhao D, Zhang B, Shi Y, Wu Y. 2008. Production of ${\alpha}$-amylase by Aspergillus oryzae As 3951 in solid state fermentation using spent brewing grains as substrate. J. Sci. Food Agric. 88: 529-535.   DOI
20 Pereira CR, Resende JTV, Guerra EP, Lima VA, Martins MD, Knob A. 2017. Enzymatic conversion of sweet potato granular starch into fermentable sugars: Feasibility of sweet potato peel as alternative substrate for ${\alpha}$-amylase production. Biocatal. Agric. Biotechnol. 11: 231-238.   DOI
21 Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R. 2014. A second generation biofuel from cellulosic agricultural by-product fermentation using Clostridium species for electricity generation. Energy Procedia. 47: 310-315.   DOI
22 Murthy PS, Naidu MM, Srinivas P. 2009. Production of ${\alpha}$-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 84: 1246-1249.   DOI
23 Arapoglou D, Varzakas T, Vlyssides A, Israilides C. 2010. Ethanol production from potato peel waste (PPW). Waste Manag. 30: 1898-1902.   DOI
24 Shukla J, Kar R. 2006. Potato peel as a solid state substrate for thermostable ${\alpha}$-amylase production by thermophilic Bacillus isolates. World J. Microbiol. Biotechnol. 22: 417-422.   DOI
25 Tamang JP, Watanabe K, Holzapfel WH. 2016. Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7: 377.
26 Li C, Du M, Cheng B, Wang L, Liu X, Ma C, et al. 2014. Close relationship of a novel Flavobacteriaceae ${\alpha}$-amylase with archaeal ${\alpha}$-amylases and good potentials for industrial applications. Biotechnol. Biofuels. 7: 18-30.   DOI
27 Kaur H, Arora M, Bhatia S, Alam MS. 2015. Optimization of ${\alpha}$-amylase and glucoamylase production in solid state fermentation of deoiled rice bran (DRB) by Rhizopus oryzae. Int. J. Pure Appl. Biosci. 3: 249-256.   DOI
28 Mobini-Dehkordi M, Javan FA. 2012. Application of alpha-amylase in biotechnology. J. Biol. Todays World. 1: 15-20.
29 DeSouza PM. 2010. Application of microbial ${\alpha}$-amylase in industry- A review. Braz. J. Microbiol. 41: 850-861.   DOI
30 Rana N, Walia A, Gaur A. 2013. ${\alpha}$-amylases from microbial sources and its potential applications in various industries. Natl. Acad. Sci. Lett. 36: 9-17.   DOI
31 Ramasamy S, Benazir JF, Ramalingam S, Kumar R, Hari A, Raman N, et al. 2011. Amylase production by Aspergillus niger under solid state fermentation using agroindustrial wastes. Int. J. Eng. Sci. Technol. 3: 1756-1763.
32 Sewalt V, Shanahan D, Gregg L, La Marta J, Carrillo R. 2016. The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Ind. Biotechnol. 12: 295-302.   DOI
33 Mukherjee R, Paul T, Soren JP, Halder SK, Mondal KC, Pati BR, et al. 2017. Acidophilic ${\alpha}$-amylase production from Aspergillus niger rbp7 using potato peel as substrate: A waste to value added approach. Waste Biomass 1: 1-13.
34 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
35 Sugiharto S, Yudiarti T, Isroli I. 2015. Functional properties of filamentous fungi isolated from the indonesian fermented dried cassava, with particular application on poultry. Mycobiology 43: 415-422.   DOI
36 Wijedasa MH, Liyanapathirana LVC. 2012. Evaluation of an alternative slide culture technique for the morphological identification of fungal species. Sri Lankan J. Infect. Dis. 2: 47-52.   DOI
37 Bisht D, Yadav SK, Darmwal NS. 2013. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: downstream processing and biochemical characterization. Braz. J. Microbiol. 44: 1305-1314.   DOI