Browse > Article
http://dx.doi.org/10.4014/mbl.1808.08006

Assessment of Bioremediation Potential of Cellulosimicrobium sp. for Treatment of Multiple Heavy Metals  

Bhati, Tushar (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Gupta, Rahul (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Yadav, Nisha (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Singh, Ruhi (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Fuloria, Antra (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Waziri, Aafrin (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Chatterjee, Sayan (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Purty, Ram Singh (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.2, 2019 , pp. 269-277 More about this Journal
Abstract
In the present study, we have studied the bioremediating capability of bacterial strain against six heavy metals. The strain was isolated from river Yamuna, New Delhi which is a very rich repository of bioremediating flora and fauna. The strain was found to be Gram positive as indicated by Gram staining. The strain was characterized using 16s rRNA gene sequencing and the BlastN result showed its close resemblance with the Cellulosimicrobium sp. As each treatment has its own toxicity eliciting expression of different factors, we observed varied growth characteristics of the bacterial isolate and its protein content in response to different heavy metals. The assessment of its bioremediation capability showed that the strain Cellulosimicrobium sp. has potential to consume or sequester the six heavy metals in this study in the following order iron > lead > zinc > cooper > nickel > cadmium. Thus, the strain Cellulosimicrobium sp. isolated in the present study can be a good model system to understand the molecular mechanism behind its bioremediating capabilities under multiple stress conditions.
Keywords
Cellulosimicrobium sp; bioremediation; multiple heavy metals tolerant; Yamuna river;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lima e Silva AAD, Carvalho MA, de Souza SA, Dias PMT, Silva Filho RGD, Saramago CS, et al. 2012. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz. J. Microbiol. 43: 1620-1631.   DOI
2 Bruins MR, Kapil S, Oehme FW. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45: 198-207.   DOI
3 Valko M, Morris H, Cronin M. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12: 1161-1208.   DOI
4 Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7: 60-72.   DOI
5 Singh N, Kumar D, Sahu AP. 2007. Arsenic in the environment: effects on human health and possible prevention. J. Environ. Biol. 28: 359-365.
6 Hopkins J. 1991. IARC Monographs on the evaluation of carcinogenic risks to humans: Volume 49. Chromium, nickel and welding. Food Chem. Toxicol. 29: 647-648.
7 Ahluwalia SS, Goyal D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243-2257.   DOI
8 Hussein H, Farag S, Moawad H. 2003. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab. J. Biotechnol. 7: 13-22.
9 Waisberg M, Joseph P, Hale B, Beyersmann D. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192: 95-117.   DOI
10 Kapoor A, Viraraghavan T. 1995. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195-206.   DOI
11 Kang CH, Kwon YJ, So JS. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 89: 64-69.   DOI
12 Sehgal M, Garg A, Suresh R, Dagar P. 2012. Heavy metal contamination in the Delhi segment of Yamuna basin. Environ. Monit. Assess. 184: 1181-1196.   DOI
13 Volpicella M, Leoni C, Manzari C, Chiara M, Picardi E, Piancone E, et al. 2017. Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq. Sci. Rep. 7: 8262.   DOI
14 Clarridge JE. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-862.   DOI
15 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
16 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
17 Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191.   DOI
18 Smith AC, Hussey MA. 2005. Gram stain protocols. In: ACM Microbelibrary - Laboratory protocols. American Society for Microbiology, Washington, USA, http://www.microbelibrary.org
19 Kaushik A, Kansal A, Kumari S, Kaushik CP. 2009. Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. J. Hazard. Mater. 164: 265-270.   DOI
20 Lowry OH, Rosebrough NJ, Farr AL, Randel JR. 1951. Protein estimation with folin phenol reagent. J. Biol. Chem. 193: 265-275.   DOI
21 Bharagava RN, Mishra S. 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 147: 102-109.   DOI
22 Schumann P, Weiss N, Stackebrandt E. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1007-1010.   DOI
23 Scott JR, Zahner D. 2006. Pili with strong attachments: Grampositive bacteria do it differently. Mol. Microbiol. 62: 320-330.   DOI
24 Yoon JH, Kang SJ, Schumann P, Oh TK. 2007. Cellulosimicrobium terreum sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 2493-2497.   DOI
25 Chandra R, Bharagava RN, Kapley A, Purohit HJ. 2011. Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour. Technol. 102: 2333-2341.   DOI
26 Elwakeel KZ, El-Sadik HA, Abdel-Razek AS, Beheary MS. 2012. Environmental remediation of thorium (IV) from aqueous medium onto Cellulosimicrobium cellulans isolated from radioactive wastewater. Desalination Water Treat. 46: 1-9.   DOI
27 Rizvi F, Kanwal W, Faisal M. 2016. Chromate-reducing profile of bacterial strains isolated from industrial effluents. Pol. J. Environ. Stud. 25: 2121-2128.   DOI
28 Delport J, Wakabayashi AT, Anantha RV, Lannigan R, John M, McCormick JK. 2014. Cellulosmicrobium cellulans isolated from a patient with acute renal failure. JMM Case Rep. 1.
29 Gonzales Zamora JA, Camps N. 2018. Bacteremia caused by Cellulosimicrobium in a bone marrow transplant patient: A case report and literature review. IDCases 11: 64-66.   DOI
30 Youssef AS, Beltagy EA, El-Shenawy MA, El-Assar SA. 2012. Production of k-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr. J. Microbiol. Res. 6: 6618-6628.
31 Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, et al. 2018. Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarboncontaminated soil. Braz. J. Microbiol. 49: 258-268.   DOI
32 Vijver MG, Elliott EG, Peijnenburg WJGM, de Snoo GR. 2011. Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environ. Toxicol. Chem. 30: 1482-1487.   DOI
33 Cabrero A, Fernandez S, Mirada F, Garcia J. 1998. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res. 32: 1355-1362.   DOI
34 Rial D, Vazquez JA, Murado MA. 2011. Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Appl. Microbiol. Biotechnol. 90: 1095-1109.   DOI
35 Tunali S, Cabuk A, Akar T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 115: 203-211.   DOI
36 Trevors JT, Oddie KM, Belliveau BH. 1985. Metal resistance in bacteria. FEMS Microbiol. Lett. 32: 39-54.   DOI
37 Gupta K, Chatterjee C, Gupta B. 2012. Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia. 67: 827-836.   DOI
38 Zhang Y, Chen S, Hao X, Su JQ, Xue X, Yan Y, et al. 2016. Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae Strain LSJC7 to arsenic exposure. Front. Microbiol. 7: 636.
39 Gadd GM. 1992. Metals and microorganisms: A problem of definition. FEMS Microbiol. Lett. 100: 197-203.   DOI
40 Nies DH. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750.   DOI
41 Bhattacharyya S, Chatterjee S, Basu S. 2008. Mercury pollution: The problem still persists. Everyman's Sci. 42: 279-286.