Browse > Article
http://dx.doi.org/10.4014/mbl.1812.12009

Optimization of Streptococcus macedonicus MBF10-2 Lysate Production in Plant-based Medium by Using Response Surface Methodology  

Andyanti, Dini (Pharmaceutical Microbiology and Biotechnology Research Group, Faculty of Pharmacy, Universitas Indonesia, UI Campus Depok)
Dani, Fatin M. (Pharmaceutical Microbiology and Biotechnology Research Group, Faculty of Pharmacy, Universitas Indonesia, UI Campus Depok)
Mangunwardoyo, Wibowo (Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, UI Campus Depok)
Sahlan, Muhamad (Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, UI Campus Depok)
Malik, Amarila (Pharmaceutical Microbiology and Biotechnology Research Group, Faculty of Pharmacy, Universitas Indonesia, UI Campus Depok)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.2, 2019 , pp. 220-233 More about this Journal
Abstract
Bacterial lysates have become a common ingredient for natural health care. Lactic acid bacteria (LAB) could serve as potential candidates for lysate production: the lactic acids produced by LAB have been utilized for their moisturizing, antimicrobial, and rejuvenating effects, while other substances provide topical benefits and health effects for the skin. Our study aimed to obtain lysate from a LAB S. macedonicus MBF 10-2 through an optimized fermentation using the Response Surface Methodology. Strain MBF10-2 was cultivated in a 2L fermenter tank in de Man Rogosa and Sharpe (MRS) medium and in plant-based peptone modified MRS, i.e. Soy-peptone and Vegitone. The duration and the medium composition (dextrose and soy peptone or proteose peptone) were adjusted to obtain an optimum production of cell lysate. Central Composite Design was employed for Design Expert 7.0.0 by adjusting 3 factors: dextrose (1%, 1.5%, 2%, 2.5%, 3%), soy or proteose peptone (0.5%, 0.75%, 1%, 1.25% and 1.5%), and duration of fermentation (8, 10, 12 14, and 16 h for MRS-Soy peptone and 15, 17, 19, 21, and 23 h for MRS Vegitone). Bacteriocin-Like Inhibitor Substance activity of lysate and pH were used as indicators. The optimum condition for lysate production using MRS Soy Peptone and Vegitone are as follows: dextrose concentration 2.5%, plant-based peptone 1.25%, while optimum fermentation duration were 11.18 h (MRS Soy Peptone) and 17 h (MRS Vegitone) with a starter concentration of 10% at $OD_{600nm}$ $0.2{\pm}0.05$. However, the standard MRS medium produced better quality lysate compared to MRS plant-based peptones.
Keywords
Bacterial lysate; bacteriocin; lactic acid bacteria; MRS; response surface methodology; Streptococcus macedonicus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Volz T, Skabytska Y, Guenova E, Chen KM, Frick JS, Kirschning S, et al. 2014. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J. Invest. Dermatol. 134: 96-104.   DOI
2 Georgalaki MD, Van Den Berghe E, Kritikos D, Devreese B, Van Beeumen J, Kalantzopoulos G, et al. 2002. Macedocin, a foodgrade lantibiotic produced by Streptococcus macedonicus ACADC 198. Appl. Environ. Microbiol. 68: 5891-903.   DOI
3 Vuyst LD, Tsakalidou E. 2008. Streptococcus macedonicus, a multifunctional and promising species for dairy fermentations. Int. Dairy J. 18: 476-485.   DOI
4 Van den Berghe E, Skourtas G, Tsakalidou E, De Vuyst L. 2006. Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture. Int. J. Food Microbiol. 107: 138-147.   DOI
5 Georgalaki MD, Sarantinopoulos P, Ferreira ES, De Vuyst L, Kalantzopoulos G, Tsakalidou E. 2000. Biochemical properties of Streptococcus macedonicus strains isolated from Greek Kasseri cheese. J. Appl. Microbiol. 88: 817-825.   DOI
6 Grazia SE, Sumayyah S, Haiti FS, Sahlan M, Heng NCK, Malik A. 2017. Bacteriocin-like inhibitory substance (BLIS) activity of Streptococcus macedonicus MBF10-2 and its synergistic action in combination with antibiotics. Asian Pac. J. Trop. Med. 10: 1140-1145.   DOI
7 Lorenz TC. 2012. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. (63): e3998.
8 Silva CCG, Silva SPM, Ribeiro SC. 2018. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 9: 594.   DOI
9 Guéniche A, Bastien P, Ovigne JM, Kermici M, Courchay G, Chevalier V, et al. 2010. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp. Dermatol. 19: e1-e8.   DOI
10 Abbasiliasi S, Tan JS, Tengku Ibrahim TA, Bashokouh F, Ramakrishnan NR, Mustafa S, et al. 2017. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv. 7: 29395-29420.   DOI
11 Malik A, Radji M, Kralj S, Dijkhuizen L. 2009. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol. Lett. 300: 131-138.   DOI
12 De Man J, Rogosa M, Sharpe M. 1960. A Medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23: 130-135.   DOI
13 Pujato SA, Guglielmotti DM, Martinez-Garcia M, Quiberoni A, Mojica FJM. 2017. Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int. J. Food Microbiol. 257: 128-137.   DOI
14 Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al. 2018. Direct recovery of Bacillus subtilis xylanase from fermentation broth with an alcohol/salt aqueous biphasic system. J. Biosci. Bioeng. 125: 585-589.   DOI
15 Kareb O, Champagne CP, Jean J, Gomaa A, Aider M. 2018. Effect of electro-activated sweet whey on growth of Bifidobacterium, Lactobacillus, and Streptococcus strains under model growth conditions. Food Res. Int. 103: 316-325.   DOI
16 Salzano AM, Novi G, Arioli S, Corona S, Mora D, Scaloni A. 2013. Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or/SDS-PAGE combined with nLC-ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in Streptococcus thermophilus. J. Proteomics. 94: 240-261.   DOI
17 Georgalaki M, Papadimitriou K, Anastasiou R, Pot B, Van Driessche G, Devreese B, et al. 2013. Macedovicin, the second foodgrade lantibiotic produced by Streptococcus macedonicus ACADC 198. Food Microbiol. 33: 124-130.   DOI
18 Cappannella E, Benucci I, Lombardelli C, Liburdi K, Bavaro T, Esti M. 2016. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study. Food Chem. 210: 49-55.   DOI
19 Othman M, Ariff AB, Wasoh H, Kapri MR, Halim M. 2017. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition. AMB Express. 7: 215.   DOI
20 Liu W, Pang H, Zhang H, Cai Y. 2014. Biodiversity of lactic acid bacteria, pp.103-203. in Lactic Acid Bacteria. Springer.
21 Colla LL, Mangano A, Mangano A, Albertin A. 2009. Effects of nonpathogenic gram‐negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, doubleblind, placebo-controlled clinical study. Br. J. Dermatol. 161: 477-478.   DOI
22 Pathak M, Martirosyan D. 2012. Optimization of an effective growth medium for culturing probiotic bacteria for applications in strict vegetarian food products. FFHDJ. 2: 369-378.   DOI
23 Bustos G, Moldes AB, Cruz JM, Domínguez JM. 2004. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J. Agric. Food Chem. 54: 801-808.
24 Rodrigues LR, Teixeira JA, Oliveira R. 2006. Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem. Eng. J. 32: 135-142.   DOI
25 Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB. 2018. Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed. Res. Int. 2018: 5973484.
26 Zhao Y, Wang Y, Song Z, Shan C, Zhu R, Liu F. 2016. Development of a simple, low-cost and eurytopic medium based on Pleurotus eryngii for lactic acid bacteria. AMB Express. 6: 65.   DOI
27 Dimic G. 2006. Characteristics of the Leuconostoc mesenteroides subsp. mesenteroides strains from fresh vegetables. Acta. Period Technol. 37: 3-11.   DOI
28 Gueniche A, Benyacoub J, Blum S, Breton L, Castiel I. 2009. Probiotics for skin benefits, pp. 421-439. In Nutritional Cosmetics. Elsevier.
29 Lahtinen S. 2012. Lactic acid bacteria : microbiological and functional aspects. 4th ed. Boca Raton. FL, CRC Press.
30 Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788.   DOI
31 De Vuyst L, Leroy F. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13: 194-199.   DOI
32 Tagg J, Bannister LV. 1979. Fingerprinting ${\beta}$-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J. Med. Microbiol. 12: 397-411.   DOI
33 Lew LC, Gan CY, Liong MT. 2012. Dermal Bioactives from Lactobacilli and Bifidobacteria. Ann. Microbiol. 63: 1047-1055.   DOI
34 Meckfessel MH, Brandt S. 2014. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J. Am. Acad. Dermatol. 71: 177-184.   DOI
35 Sanchez C, Villemeur MD. 2018. From Pharma to Beauty: The Potential of Bacterial Lysates The Potential of Bacterial Lysates. Available from http://www.lallemandpharma.com/wp-content/uploads/2018/04/EBR-April2018-Bacterial-lysates-potential.pdf. Accessed April 20, 2018.