Browse > Article
http://dx.doi.org/10.4014/mbl.1801.01004

Characterization of the Growth, Total Lipid and Fatty Acid Profiles in Microalga, Nannochloropsis oceanica under Different Nitrogen Sources  

Mahdieh, Majid (Department of Biology, Faculty of Science, Arak University)
Shabani, Salimeh (Department of Biology, Faculty of Science, Arak University)
Amirjani, Mohammad Reza (Department of Biology, Faculty of Science, Arak University)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.1, 2019 , pp. 11-19 More about this Journal
Abstract
The properties of microalgae as bioresources for biodiesel production can be improved by adding nitrogen sources into the culture medium. Thus, Nannochloropsis oceanica CCAP 849/10 was cultured in f/2 media supplemented with five different forms of nitrogen at $0.88mmol-N\;l^{-1}$ each: ammonium bicarbonate ($NH_4HCO_3$), ammonium sulfate ($(NH_4)_2SO_4$), sodium nitrate ($NaNO_3$), ammonium nitrate ($NH_4NO_3$), and urea. The cell density, lipid content, and fatty acid profile of the microalga were determined after 15 days of cultivation. The growth of N. oceanica based on cell number was lowest in the medium with $NH_4NO_3$, and increased significantly in the medium with $NH_4HCO_3$. Cells treated with $(NH_4)_2SO_4$, and $NH_4NO_3$ produced the highest total lipid contents (i.e., 65% and 62% by dry weight, respectively). The fatty acid profiles of the microalga were significantly different in the various nitrogen sources. The major fatty acids detected in cultures supplemented with $NH_4HCO_3$, $(NH_4)_2SO_4$, $NH_4NO_3$, or urea were C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C20:5, and C22:6. However, the C16:1 content in the $NaNO_3$-supplemented culture was very low. This study highlights that the nitrogen source can strongly influence lipid production in N. oceanica and its fatty acid composition.
Keywords
Biodiesel; Chlorophyll a; nutrient; microalga; urea;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.   DOI
2 Scragg AH, Morrison J, Shales SW. 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol. 33: 884-889.   DOI
3 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.   DOI
4 Takagi M, Karseno Yoshida T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223-226.   DOI
5 Schenk PM, Thomas-Hall, Skye R, Stephens E, Marx UC, Mussgnug JH, et al. 2008. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 1: 20-43.   DOI
6 Kim DG, Hur SB. 2013. Growth and fatty acid composition of three heterotrophic Chlorella species. Algae 28: 101-109.   DOI
7 Serrano M, Oliveros R, Sanchez M, Moraschini A, Martinez M, Aracil J. 2014. Influence of blending vegetable oil methyl esters on biodiesel fuel properties: oxidative stability and cold flow properties. Energy 65: 109-115.   DOI
8 Lapuerta M, Rodriguez-Fernandez J, de Mora EF. 2009. Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy 37: 4337-4344.   DOI
9 Emdad ID, Berland B. 1989. Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mar. Chem. 26: 215-225.   DOI
10 Arenas EG, Rodriguez Palacio MC, Juantorena AU, Fernando SEL, Sebastian PJ. 2017. Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges. Int. J. Energy Res. 41: 761-789.   DOI
11 Dunstan GA, Volkman JK, Barrett SM, Garland CD. 1993. Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol. 5: 71-83.   DOI
12 Illman AM, Scragg AH, Shales SW. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635.   DOI
13 Kim G, Mujtaba G, Rizwan M, Lee K. 2014. Environmental stress strategies for stimulating lipid production from microalgae for biodiesel. Appl. Chem. Eng. 25: 553-558.   DOI
14 Kim G, Mujtaba G, Rizwan M, Lee K. 2016. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae 31: 257-266.   DOI
15 Muthuraj M, Kumar V, Palabhanvi B, Das D. 2014. Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. J. Ind. Microbiol. Biotechnol. 41: 499-511.   DOI
16 Norici A, Dalsass A, Giordano M. 2002. Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol. Plant. 116: 186-191.   DOI
17 Wan MX, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, et al. 2012. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol. Bioeng. 109: 1958-1964.   DOI
18 Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. pp. 26-60. In Smith, W. L. and Chanley, M. H. (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York.
19 Mackinney G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 315-322.   DOI
20 Bligh EG, Dyer WJ. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.   DOI
21 Becker EW. 1994. Microalgae biotechnology and microbiology. 18 pp. Cambridge University Press, New York.
22 Wu LF, Chen PC, Lee CM. 2013. The effects of nitrogen sources and temperatures on cell growth and lipid accumulation of microalgae. Int. Biodeterior. Biodegrad. 85: 506-510.   DOI
23 Solomon CM, Glibert PM. 2008. Urease activity in five phytoplankton species. Aquat. Microb. Ecol. 52: 149-157.   DOI
24 Campos H, Boeing WJ, Dungan, BN, Schaub T. 2014. Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy 66: 301-307.   DOI
25 Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166: 105-116.   DOI
26 Podevin M, De Francisci D, Holdt SL, Angelidaki I. 2015. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J. Appl. Phycol. 27: 1415-1423.   DOI
27 Li Y, Horsman M, Wang B, Wu N, Lan CQ. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636.   DOI
28 Roopnarain A, Sym S, Gray VM. 2015. Effect of nitrogenous resource on growth, biochemical composition and ultrastructure of Isochrysis galbana (Isochrysidales, Haptophyta). Phycol. Res. 63: 43-50.   DOI
29 Ramanna L, Guldhe A, Rawat I, Bux F. 2014. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour. Technol. 168: 127-135.   DOI
30 Xiao Y, Zhang J, Cui J, Feng Y, Cui Q. 2013. Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour. Technol. 130: 731-738.   DOI
31 Knothe G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2: 759-766.   DOI
32 Singh B, Guldhe A, Rawat I, Bux F. 2014. Towards a sustainable approach for development of biodiesel from plant and microal gae. Renew. Sustain. Energy Rev. 29: 216-245.   DOI
33 Hu Q. 2013. Environmental effects on cell composition. pp. 114-122. In Richmond, A. and Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex.
34 Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI. 2002. Optimization of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 4: 111-114.
35 Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841-846.   DOI
36 McGinnis KM, Dempster TA, Sommerfeld MR. 1997. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J. Appl. Phycol. 9: 19-24.   DOI
37 Bartley ML, Boeing WJ, Daniel D, Dungan BN, Schaub T. 2016. Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. J. Appl. Phycol. 28: 15-24.   DOI
38 Cai T, Park SY, Li Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Rev. 19: 360-369.   DOI
39 Wang J, Sommerfeld MR, Lu C, Hu Q. 2013. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28: 193-202.   DOI
40 Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A. 2014. Perspectives on engineering strategies for improving biofuel production from microalgae: a critical review. Biotechnol. Adv. 32: 1448-1459.   DOI
41 Chen M, Tang H, Ma H, Holland TC, Ng KY, Salley SO. 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 102: 1649-1655.   DOI
42 Ruangsomboon S. 2015. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour. Technol. 191: 377-384.   DOI
43 Li T, Zheng Y, Yu L, Chen S. 2013. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour. Technol. 131: 60-67.   DOI