Browse > Article
http://dx.doi.org/10.4014/mbl.1805.05011

Isolation of Streptococcus thermophilus and Lactobacillus delbrueckii as Starter Culture Candidate Originated from Indonesian Cow's Milk  

Andrian, Danish (Department of Biology, Universitas Pelita Harapan)
Rizkinata, Denny (Department of Biology, Universitas Pelita Harapan)
Susanto, Tan Steven Ryan (Department of Biology, Universitas Pelita Harapan)
Lucy, Jap (Department of Biology, Universitas Pelita Harapan)
Jan, Tan Tjie (Department of Biology, Universitas Pelita Harapan)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.3, 2018 , pp. 201-209 More about this Journal
Abstract
Streptococcus thermophilus, Lactobacillus delbrueckii, Lactobacillus fermentum and Lactobacillus casei were successfully isolated from indigenous Indonesian fresh milk based on the general morphological and biochemical classification as described in Bergey's manual. Verification was conducted by sequencing of 16S rRNA after selection using the classification method mentioned in the manual. All isolates exhibited antimicrobial activity against Escherichia coli and Staphylococcus aureus in the well diffusion test. The susceptibilities of the isolated S. thermophilus 24/S1 and L. delbrueckii 94/L4 against 22 different antibiotics were determined by the disc diffusion method and variable susceptibility patterns were observed. Both isolates were susceptible to amoxicillin, the most commonly prescribed antibiotic, and resistant to sulfonamide. The presence of a plasmid was not detected after extraction. S. thermophilus 24/S1 and L. delbrueckii 94/L4 starter cultures were prepared for yogurt production after 9.5 h of incubation and the yogurt was evaluated for its flavor and quality by 30 volunteers. A score of $4.93{\pm}0.45$ out of 7 was obtained as compared to the yogurt prepared using commercial starter cultures which yielded a score of $4.76{\pm}0.30$ out of 7.
Keywords
Bergey's manual; starter culture; fresh milk; Lactobacillus delbrueckii; Streptococcus thermophilus; yogurt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agaliya PJ, Jeevaratnam K. 2013. Molecular characterization of lactobacilli isolated from fermented idli batter. Braz. J. Microbiol. 44: 1199-1206.   DOI
2 Verso LL, Lessard M, Talbot G, Fernandez B, Fliss I. 2017. Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiotics Antimicrob. Proteins. 10: 299-312.
3 Yun JH, Lee KB, Sung YK, Kim EB, Lee HG, Choi YJ. 2009. Isolation and characterization of potential probiotic lactobacilli from pig feces. J. Basic Microbiol. 49: 220-226.   DOI
4 Matei G-M, Matei S, Mocanu V. 2016. Isolation of new probiotic microorganisms from soil and screening for their antimicrobial activity. Soil Forming Factors and Processes from the Temperate Zone. 15: 21-26.
5 Zoumpopoulou G, Tzouvanou A, Mavrogonatou E, Alexandraki V, Georgalaki M, Anastasiou R. et al. 2017. Probiotic features of lactic acid bacteria isolated from a diverse pool of traditional Greek dairy products regarding specific strain-host interactions. Probiotics Antimicrob. Proteins. 10: 313-322.
6 Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N. et al. 2013. Health benefits of probiotics: A review. ISRN Nutr. 2013: 481651.
7 Fijan S. 2014. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public. Health. 11: 4745-4767.   DOI
8 Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF. et al. 2013. The complex microbiota of raw milk. FEMS Microbiol. Rev. 37: 664-698.   DOI
9 Iyer R, Tomar SK, Maheswari TU, Singh R. 2010. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int. Dairy J. 20: 133-141.   DOI
10 Yerlikaya O. 2014. Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Sci. Technol. (Campinas) 34: 221-229.   DOI
11 Rul F, Ben-Yahia L, Chegdani F, Wrzosek L, Thomas S, Noordine ML. et al. 2011. Impact of the metabolic activity of Streptococcus thermophilus on the colon epithelium of gnotobiotic rats. J. Biol. Chem. 286: 10288-10296.   DOI
12 Labayen I, Forga L, Gonzalez A, Lenoir-Wijnkoop I, Nutr R, Martinez JA. 2001. Relationship between lactose digestion, gastrointestinal transit time and symptoms in lactose malabsorbers after dairy consumption. Aliment. Pharmacol. Ther. 15: 543-549.   DOI
13 Surono IS. 2015. Traditional indonesian dairy foods. Asia Pac. J. Clin. Nutr. 24: S26-S30.
14 Grand View Research. (n.d.). Starter Culture Market Analysis, Market Size, Application Analysis, Regional Outlook, Competitive Strategies And Forecasts, 2014 To 2020. Available from https://www.grandviewresearch.com/industry-analysis/starter-culture-market. Accessed May 7, 2018.
15 Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (eds.). 2009. Bergey's Manual of Systemic Bacteriology Volume 3: The Firmicutes, pp. 253, 465-532. 2nd Ed. Springer-Verlag New York, New York.
16 Clinical and Laboratory Standards Institute. 2006. M45 Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
17 Liofilchem. 2017. Antibiotic Disc. Available from http://www.liofilchem.net/login/pd/pi/AD.pdf. Accessed May 7, 2018.
18 Abedi D, Feizizadeh S, Akbari V, Jafarian-Dehkordi A. 2013. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Res. Pharm. Sci. 8: 260-268.
19 Sfakianakis P, Tzia C. 2014. Conventional and innovative processing of milk for yogurt manufacture; development of texture and flavor: A Review. Foods. 3: 176-193.   DOI
20 Akpinar A, Yerlikaya O, Kilic S. 2011. Antimicrobial activity and antibiotic resistance of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus strains isolated from Turkish homemade yoghurts. Afr. J. Microbiol. Res. 5: 675-682.
21 Mezaini A, Chihib N-E, Bouras AD, Nedjar-Arroume N, Hornez JP. 2009. Antibacterial activity of some lactic acid bacteria isolated from an Algerian dairy product. J. Environ. Public. Health. 2009: 678495.
22 Gibbs PA. 1987. Novel uses for lactic acid fermentation in food preservation. J. Appl. Microbiol. 63: 51S-58S.
23 Simova ED, Beshkova DM, Angelov MP, Dimitrov ZhP. 2008. Bacteriocin production by strain Lactobacillus delbrueckii ssp. bulgaricus BB18 during continuous prefermentation of yogurt starter culture and subsequent batch coagulation of milk. J. Ind. Microbiol. Biotechnol. 35: 559-567.   DOI
24 Todorov SD. 2009. Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action: producao, organizacao genetica e modo de acao. Braz. J. Microbiol. 40: 209-221.   DOI
25 Pradipta IS, Ronasih E, Kartikawati AD, Hartanto H, Amelia R, Febrina E. et al. 2015. Three years of antibacterial consumption in Indonesian Community Health Centers: The application of anatomical therapeutic chemical/defined daily doses and drug utilization 90% method to monitor antibacterial use. J. Family Commun. Med. 22: 101-105.   DOI
26 Jones RN, Fritsche TR, Sader HS, Ross JE. 2006. Activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant Gram-positive cocci. Antimicrob. Agents Chemother. 50: 2583-2586.   DOI
27 Chr. Hansen. 2018. Culture range for fermented milk. Available from https://hjemmeriet.com/da/ChrHansen/Brochures/Fermented _milk_range_brochure.pdf. Accessed May 7, 2018.
28 Ocana V, Silva C, Nader-Macias ME. 2006. Antibiotic susceptibility of potentially probiotic vaginal lactobacilli. Infect. Dis. Obstet. Gynecol. 2006: 18182.
29 Huys G, D'Haene K, Swings J. 2002. Influence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett. Appl. Microbiol. 34: 402-406.   DOI
30 Clinical and Laboratory Standards Institute. 2014. M100-S24 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
31 Ruoff KL, Kuritzkes DR, Wolfson JS, Ferraro MJ. 1988. Vancomycinresistant gram-positive bacteria isolated from human sources. J. Clin. Microbiol. 26: 2064-2068.
32 Zhou JS, Pillidge CJ, Gopal PK, Gill HS. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 98: 211-217.   DOI
33 Cordonnier C, Thevenot J, Etienne-Mesmin L, Alric M, Livrelli V, Blanquet-Diot S. 2017. Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy? Crit. Rev. Microbiol. 43: 116-132.   DOI
34 Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek. 76: 159-184.   DOI
35 Kyriacou A, Tsimpidi E, Kazantzi E, Mitsou E, Kirtzalidou E, Oikonomou Y. et al. 2008. Microbial content and antibiotic susceptibility of bacterial isolates from yoghurts. Int. J. Food Sci. Nutr. 59: 512-525.   DOI
36 Hummel AS, Hertel C, Holzapfel WH, Franz CMAP. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73: 730-739.   DOI
37 Wagner RD, Johnson SJ. 2017. Probiotic bacteria prevent Salmonella - induced suppression of lymphoproliferation in mice by an immunomodulatory mechanism. BMC Microbiol. 17: 77.   DOI
38 Abdel-Daim A, Hassouna N, Hafez M, Ashor MSA, Aboulwafa MM. 2013. Antagonistic activity of Lactobacillusisolates against Salmonella typhiin vitro. Biomed. Res. Int. 2013: 680605.
39 Licciardi PV, Toh ZQ, Dunne E, Wong S-S, Mulholland EK, Tang M. et al. 2012. Protecting against pneumococcal disease: Critical interactions between probiotics and the airway microbiome. PLoS Pathog. 8: e1002652.   DOI
40 Mogna L, Deidda F, Nicola S, Amoruso A, Del Piano M, Mogna G. 2016. In Vitro inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106): An innovative strategy to possibly counteract such infections in humans? J. Clin. Gastroenterol. 50: S136-S139.   DOI
41 Ngwa CJ, Pradel G. 2015. Coming soon: probiotics-based malaria vaccines. Trends Parasitol. 31: 2-4.   DOI
42 Shi LH, Balakrishnan K, Thiagarajah K, Ismail NIM, Yin OS. 2016. Beneficial properties of probiotics. Trop. Life Sci. Res. 27: 73-90.   DOI
43 Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B. 2016. Probiotic approach to prevent antibiotic resistance. Ann. Med. 48: 246-255.   DOI
44 Krzych-Falta E, FurmaNczyk K, Tomaszewska A, Olejniczak D, Samoliński B, SamoliNska-Zawisza U. 2018. Probiotics: Myths or facts about their role in allergy prevention. Adv. Clin. Exp. Med. 27: 119-124.   DOI
45 Chaucheyras-Durand F, Durand H. 2010. Probiotics in animal nutrition and health. Benef. Microbes. 1: 3-9.   DOI