Browse > Article
http://dx.doi.org/10.4014/mbl.1804.04017

Prevalence and Molecular Characterization of ESBL Producing Enterobacteriaceae from Highly Polluted Stretch of River Yamuna, India  

Siddiqui, Kehkashan (Department of Biosciences, Jamia Millia Islamia)
Mondal, Aftab Hossain (Department of Biosciences, Jamia Millia Islamia)
Siddiqui, Mohammad Tahir (Department of Biosciences, Jamia Millia Islamia)
Azam, Mudsser (Department of Biosciences, Jamia Millia Islamia)
Haq., Qazi Mohd. Rizwanul (Department of Biosciences, Jamia Millia Islamia)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.2, 2018 , pp. 135-144 More about this Journal
Abstract
The rapid increase in number and diversity of Extended Spectrum ${\beta}$-Lactamases (ESBLs) producing Enterobacteriaceae in natural aquatic environment is a major health concern worldwide. This study investigates abundance and distribution of ESBL producing multidrug resistant Enterobacteriaceae and molecular characterization of ESBL genes among isolates from highly polluted stretch of river Yamuna, India. Water samples were collected from ten different sites distributed across Delhi stretch of river Yamuna, during 2014-15. A total of 506 non duplicate Enterobacteriaceae isolates were obtained. Phenotypic detection of ESBL production and antibiotic sensitivity for 15 different antibiotics were performed according to CLSI guidelines (Clinical and Laboratory Standard Institute, 2015). A subset of ESBL positive Enterobacteriaceae isolates were identified by 16S rRNA gene and screened for ESBL genes, such as $bla_{CTX-M}$, $bla_{TEM}$ and $bla_{OXA}$. Out of 506 non-duplicate bacterial isolates obtained, 175 (34.58%) were positive for ESBL production. Susceptibility pattern for fifteen antibiotics used in this study revealed higher resistance to cefazolin, rifampicin and ampicillin. A high proportion (76.57%) of ESBL positive isolates showed multidrug resistance phenotype, with MAR index of 0.39 at Buddha Vihar and Old Delhi Railway bridge sampling site. Identification and PCR based characterization of ESBL genes revealed the prevalence of $bla_{CTX-M}$ and $bla_{TEM}$ genes to be 88.33% and 61.66%, respectively. Co-occurrence of $bla_{CTX-M}$ and $bla_{TEM}$ genes was detected in 58.33% of the resistant bacteria. The $bla_{OXA}$ gene was not detected in any isolates. This study highlights deteriorating condition of urban aquatic environment due to rising level of ESBL producing Enterobacteriaceae with multidrug resistance phenotype.
Keywords
River Yamuna; Enterobacteriaceae; multidrug resistance; ESBL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, et al. 2004. Molecular characterization of extended-spectrum ${\beta}$-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol. 42: 2902-2906.   DOI
2 Naiemi NA, Duim B, Savelkoul PH, Spanjaard L, de Jonge E, Bart A, et al. 2005. Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J. Clin. Microbiol. 43: 4862-4864.   DOI
3 Lahlaoui H, Dahmen S, Moussa MB, Omrane B. 2011. First detection of TEM-116 extended-spectrum ${\beta}$-lactamase in a Providencia stuartii isolate from a Tunisian hospital. Indian J. Med. Microbiol. 29: 258-261.   DOI
4 Barguigua A, El Otmani F, Talmi M, Zerouali K, Timinouni M. 2013. Prevalence and types of extended spectrum ${\beta}$-lactamases among urinary Escherichia coli isolates in Moroccan community. Microb. Pathog. 61-62: 16-22.   DOI
5 Romero ED, Padilla TP, Hernandez AH, Grande RP, Vazquez MF, Garcia IG, et al. 2007. Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum ${\beta}$-lactamases. Diagn. Microb. Infect. Dis. 59: 433-437.   DOI
6 Al-Agamy MH, Shibl AM, Hafez MM, Al-Ahdal MN, Memish ZA, Khubnani H. 2014. Molecular characteristics of extended-spectrum ${\beta}$-lactamase-producing Escherichia coli in Riyadh: emergence of CTX-M-15-producing E. coli ST131. Ann. Clin. Microbiol. Antimicrob. 13: 4.   DOI
7 Poirel L, Bonnin RA, Nordmann P. 2012. Genetic support and diversity of acquired extended-spectrum ${\beta}$-lactamases in Gramnegative rods. Infect. Genet. Evol. 12: 883-893.   DOI
8 Wang H, Kelkar S, Wu W, Chen M, Quinn JP. 2003. Clinical isolates of Enterobacteriaceae producing extended-spectrum ${\beta}$-lactamases: prevalence of CTX-M-3 at a hospital in China. Antimicrob. Agents Chemother. 47: 790-793.   DOI
9 Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, Mundy LM. 2007. The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum ${\beta}$-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn. Microbiol. Infect. Dis. 58: 349-355.   DOI
10 Lee SY, Park YJ, Yu JK, Jung S, Kim Y, Jeong SH, et al. 2012. Prevalence of acquired fosfomycin resistance among extended-spectrum ${\beta}$-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J. Antimicrob. Chemother. 67: 2843-2847.   DOI
11 Sjolund-Karlsson M, Howie R, Krueger A, Rickert R, Pecic G, Lupoli K, et al. 2011. CTX-M-producing non-Typhi Salmonella spp. isolated from humans, United States. Emerg. Infect. Dis. 17: 97-99.   DOI
12 Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, et al. 2014. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect. Dis. 14: 659.   DOI
13 Maravic A, Skocibusic M, Fredotovic Z, Samanic I, Cvjetan S, Knezovic M, et al. 2016. Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acinetobacter spp. Environ. Sci. Pollut. Res. Int. 23: 3525-3535.   DOI
14 Lu SY, Zhang YL, Geng SN, Li TY, Ye ZM, Zhang DS, et al. 2010. High diversity of extended-spectrum ${\beta}$-lactamase-producing bacteria in an urban river sediment habitat. Appl. Environ. Microbiol. 76: 5972-5976.   DOI
15 Vivant AL, Boutin C, Prost-Boucle S, Papias S, Hartmann A, Depret G, et al. 2016. Free water surface constructed wetlands limit the dissemination of extended-spectrum ${\beta}$-lactamase producing Escherichia coli in the natural environment. Water Res. 104: 178-188.   DOI
16 Ansari S, Nepal HP, Gautam R, Shrestha S, Neopane P, Gurung G, et al. 2015. Community acquired multi-drug resistant clinical isolates of Escherichia coli in a tertiary care center of Nepal. Antimicrob. Resist. Infect. Control. 4: 15.   DOI
17 Holzel CS, Schwaiger K, Harms K, Kuchenhoff H, Kunz A, Meyer K, et al. 2010. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria. Environ. Res. 110: 318-326.   DOI
18 Shahraki-Zahedani S, Rigi S, Bokaeian M, Ansari-Moghaddam A, Moghadampour M. 2016. First report of TEM-104-, SHV-99-, SHV-108-, and SHV-110-producing Klebsiella pneumoniae from Iran. Rev. Soc. Bras. Med. Trop. 49: 441-445.   DOI
19 Franz E, Veenman C, van Hoek AH, de Roda Husman A, Blaak H. 2015. Pathogenic Escherichia coli producing extended-spectrum ${\beta}$-lactamases isolated from surface water and wastewater. Sci. Rep. 5: 14372.   DOI
20 Diwan V, Chandran SP, Tamhankar AJ, Stalsby Lundborg C, Macaden R. 2012. Identification of extended-spectrum ${\beta}$-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. J. Antimicrob. Chemother. 67: 857-859.   DOI
21 Reinthaler FF, Feierl G, Galler H, Haas D, Leitner E, Mascher F, et al. 2010. ESBL-producing E. coli in Austrian sewage sludge. Water Res. 44: 1981-1985.   DOI
22 Jang J, Suh Y-S, Di DY, Unno T, Sadowsky MJ, Hur H-G. 2013. Pathogenic Escherichia coli strains producing extended-spectrum ${\beta}$-lactamases in the Yeongsan River basin of South Korea. Environ Sci. Technol. 47: 1128-1136.   DOI
23 Tacao M, Correia A, Henriques I. 2012. Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of blaCTX-M-like genes. Appl. Environ. Microbiol. 78: 4134-4140.   DOI
24 Zurfluh K, Hachler H, Nuesch-Inderbinen M, Stephan R. 2013. Characteristics of extended-spectrum ${\beta}$-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl. Environ. Microbiol. 79: 3021-3026.   DOI
25 Chen P-A, Hung C-H, Huang P-C, Chen J-R, Huang I-F, Chen W-L, et al. 2016. Characteristics of CTX-M extended-spectrum ${\beta}$-lactamase-producing Escherichia coli strains isolated from multiple rivers in Southern Taiwan. Appl. Environ. Microbiol. 82: 1889-1897.   DOI
26 Caltagirone M, Nucleo E, Spalla M, Zara F, Novazzi F, Marchetti VM, et al. 2017. Occurrence of Extended Spectrum ${\beta}$-Lactamases, KPC-Type, and MCR-1. 2-Producing Enterobacteriaceae from Wells, River Water, and Wastewater Treatment Plants in Oltrepo Pavese Area, Northern Italy. Front. Microbiol. 8: 2232.   DOI
27 Lenart-Boron A. 2017. Antimicrobial resistance and prevalence of extended-spectrum ${\beta}$-lactamase genes in Escherichia coli from major rivers in Podhale, southern Poland. Int. J. Environ. Sci. Technol. 14: 241-250.   DOI
28 Li X-Z, Mehrotra M, Ghimire S, Adewoye L. 2007. ${\beta}$-Lactam resistance and ${\beta}$-lactamases in bacteria of animal origin. Vet. Microbiol. 121: 197-214.   DOI
29 Said LB, Jouini A, Alonso CA, Klibi N, Dziri R, Boudabous A, et al. 2016. Characteristics of extended-spectrum ${\beta}$-lactamase (ESBL)-and pAmpC${\beta}$-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Sci. Total Environ. 550: 1103-1109.   DOI
30 O'Neill J. 2016. The Review on Antimicrobial Resistance. 2016. Tackling drug-resistant infections globally: final report and recommendations URL:http://amr-review.org/ [accessed 2016-07-26] [WebCite Cache ID 6jI5znBnd].
31 Carattoli A. 2013. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303: 298-304.   DOI
32 Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important ${\beta}$-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65: 490-495.   DOI
33 Canton R, Coque TM. 2006. The CTX-M ${\beta}$-lactamase pandemic. Curr. Opin. Microbiol. 9: 466-475.   DOI
34 Pitout JD, Laupland KB. 2008. Extended-spectrum ${\beta}$-lactamaseproducing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8: 159-166.   DOI
35 Lupo A, Coyne S, Berendonk TU. 2012. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front. Microbiol. 3: 18.
36 Tacao M, Moura A, Correia A, Henriques I. 2014. Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res. 48: 100-107.   DOI
37 Parveen S, Portier KM, Robinson K, Edmiston L, Tamplin ML. 1999. Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol. 65: 3142-3147.
38 Falagas ME, Karageorgopoulos DE. 2008. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin. Infect. Dis. 46: 1121-1122.   DOI
39 Sanderson H, Fricker C, Brown RS, Majury A, Liss SN. 2016. Antibiotic resistance genes as an emerging environmental contaminant. Environ. Rev. 24: 205-218.   DOI
40 Cockerill F, Patel J. 2015. M100-S25 performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Clin. Lab Stand. Inst. 35: 44-49.
41 Krumperman PH. 1983. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46: 165-170.
42 Azam M, Jan AT, Haq QM. 2016. bla CTX-M-152, a Novel Variant of CTX-M-group-25, Identified in a Study Performed on the Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India. Front. Microbiol. 7: 176.
43 Bajaj P, Singh NS, Kanaujia PK, Virdi JS. 2015. Distribution and molecular characterization of genes encoding CTX-M and AmpC ${\beta}$-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci. Total Environ. 505: 350-356.   DOI
44 Chen H, Shu W, Chang X, Chen JA, Guo Y, Tan Y. 2010. The profile of antibiotics resistance and integrons of extended-spectrum ${\beta}$-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. Environ. Pollut. 158: 2459-2464.   DOI