Browse > Article
http://dx.doi.org/10.4014/mbl.1708.08006

Analysis of Bacterial Spot Disease in Red Pepper Caused by Increase of CO2 Concentration  

Jang, Jong-Ok (Research Institute for Climate Change and Agriculture)
Kim, Byung-Hyuk (Research Institute for Climate Change and Agriculture)
Moon, Doo-Gyung (Research Institute for Climate Change and Agriculture)
Koh, Sang-wook (Research Institute for Climate Change and Agriculture)
Joa, Jae-Ho (Citrus Research Institute, NIHHS, RDA)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.1, 2018 , pp. 77-84 More about this Journal
Abstract
An increase in $CO_2$ will affect plant pathogenic microorganisms, the resistance of host plants, and host-pathogen interactions. This study used Capsicum annuum and Xanthomonas euvesicatoria, a pathogenic bacterium of pepper, to investigate the interactions between hosts and pathogens in conditions of increased $CO_2$ concentrations. Our analysis of disease resistance genes under 800 ppm $CO_2$ using quantitative RT-PCR showed that the expression of CaLRR1, CaPIK1, and PR10 decreased, but that of negative regulator WRKY1 increased. Additionally, the disease progress and severity was higher at 800 ppm than 400 ppm $CO_2$. These results will aid in understanding the interaction between red pepper and X. euvesicatoria under increased $CO_2$ concentrations in the future.
Keywords
$CO_2$; red pepper; Xanthomonas euvesicatoria; bacterial spot disease;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Guo A, Salih G, Klessig DF. 2000. Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a sibset is also ethylene independent. Plant J. 21: 409-418.
2 Nurnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266.   DOI
3 Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat- Michel A, et al. 2016. Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Molecular Plant. 9: 662-681.   DOI
4 Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, et al. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through NPR1-and SAdependent signaling pathoway. Biochem. Bioph. Res. Co. 469: 120-125.
5 Kim DS, Kim NH, Hwang BK. 2015. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. J. Exp. Bot. 66: 1987-1999.   DOI
6 Kim NH, Kim DS, Chung EH, Hwang BK. 2014. Pepper suppressor of the G2 Allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in an phosphorylation dependent manner. Plant Physiol. 165: 76-91.   DOI
7 Caddell DF, Park C-J, Thomas NC, Canlas PE, Ronald PC. 2017. Silencing of the rice gene LRR1 compromises rice Xa21 transcript accumulation and XA21-mediated immunity. RICE. 10: 1-11.   DOI
8 Huang L-F, Lin K-H, He S-L, Chen J-L, Jiang J-Z, Chen B-H, et al. 2016. Multiple patterns of regulation and overexpression of a ribonuclease-like pathogenesis-related protein gene, OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS One 11: 1-27.
9 Konda AK, Farmer R, Soren KR, S. SP, Setti A. 2017. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea. J. Biomol. Struct. Dyn. 1-13.
10 Qiao Z, Li C-L, Zhang W. 2016. WRKY1 regulates stomatal movement in drought stressed Arabidopsis Thaliana. Plant Mol. Biol. 91: 53-65.   DOI
11 Park J-H, Park S-J, Kwon O-H, Choi S-Y, Park S-D, Kim J-E. 2015. Effect of mixed treatment of nitrogen fertilizer and zeolite on soil chemical properties and growth of hot pepper. Korean J. Soil Sci. Fert. 48: 44-49.   DOI
12 Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819: 120-128.   DOI
13 Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, et al. 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria - pepper interactions. Mol. Plant Microbe. Interact. 3: 41-47.   DOI
14 Dangle JL, Jones JDG. 2001. Plant pathogens and intergrated defense response to infection. Nature 411: 826-833.   DOI
15 Kobe B, Deisenhofer J. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19: 415-421.   DOI
16 Jung HW, Hwang BK. 2007. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol. Plant Pathol. 8: 503-514.
17 Hong JK, Hwang IS, Hwang BK. 2017. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. Planta 246: 351-364.
18 Tang M, Lu S, Jing Y, Shou X, Sun J, Shen S. 2005. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol. Biochem. 43: 233-239.   DOI
19 Eulgem T. 2006. Dissecting the WRKY web of plant defense regulators. PLos Pathogens. 2: 1028-1030.
20 Oh S-K, Baek K-H, Park JM, Yi SY, Yu SH, Kamoun S, et al. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177: 177-989.
21 Johnson LN, Noble MEM, Owen DJ. 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85: 149-158.   DOI
22 Kim DS, Hwang BK. 2011. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J. 66: 642-655.   DOI
23 Afzal AJ, Wood AJ, Lightfoot DA. 2008. Plant receptor like serine threonine kinase: roles in signaling and plant defense. Mol. Plant Microbe. Interact. 21: 507-517.   DOI
24 Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, et al. 2007. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J. 52: 1066-1079.   DOI
25 Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez- Gomez L, et al. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983.   DOI
26 Leon J, Yalpani N, Raskin I, Lawton MA. 1993. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol. 103: 323-328.   DOI
27 van Loon LC, van Strein EA. 1999. The families of pathogenesisrelated proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant P. 55: 85-97.
28 Upadhyay P, Rai A, Kumar R, Singh M, Sinha B. 2014. Differential expressiion of pathogenesis related protein genes in tomato during inoculation with A. solani. J. Plant Pathol. Microb. 5: 217.
29 Van Loon LC, Pierpoint WS, Boller TH. 1994. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 12: 245-264.   DOI
30 Lo S-CC, Hipskind JD, Nicholson RL. 1999. cDNA cloning of sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Collectotrichum sublineolum. Mol. Plant Microbe Interact. 12: 479-489.   DOI
31 Guevara-Morato MA, Lacoba MGd, Garcia-Luque I, Serra MT. 2010. Characterization of a pathogenesis-related protein 4 (PR- 4) induced in Capsicum chinense L3 plants with dual RNase and DNase activities. J. Exp. Bot. 61: 3259-3271.
32 Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H. 2004. Pathogenesis-related protein 10 isolated from hot pepper funtion as a ribonuclease in an antiviral pathway. Plant J. 37: 186-198.   DOI
33 Hwang IS, Choi DS, Kim NH, Kim DS, Hwang BK. 2014. Pathogenesis- related protein 4b interacts with leucine-rich repeat protein 1 to suppress PR4b-triggered cell death and defense response in pepper. Plant J. 77: 521-533.   DOI
34 Hipskind JD, Nicholson RL, Goldsbrough PB. 1996. Isolation of a cDNA encoding a novel leucine-rich repeat motif from Sorghum bicolor inoculated with fungi. Mol. Plant Microbe. Interact. 9: 819-825.   DOI
35 Moon J-C, Kim JY, Beak S-B, Kwon Y-U, Song K, Lee B-M. 2014. Transcription factor for gene funtion analysis in maize. Korean J. Crop Sci. 59: 263-281.   DOI
36 Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.   DOI
37 Duner J, Shah J, Klessig DF. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2: 226-274.
38 Oh S-K, Baek K-H, Park JM, Yi SY, Yu SH, Kamoun S, et al. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177: 977-989.   DOI
39 Shiu SH, Bleecker AB. 2003. Expansion of the receptor-like kinase/Pelle gene famil and receptor-like proteins in Arabidopsis. Plant Physiol. 132: 530-543.
40 Shiu SH, Bleecker AB. 2001. Receptor-like kinases from Arabidopsis form a nomophyletic gene family elated to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98: 10763-10768.   DOI
41 Ecker JR. 1995. The ethylene signal transduction pathway in plants. Science 268: 667-675.   DOI
42 Ziadi A, Poupard P, Brisset MN, Paulin JP, Simoneau P. 2001. Characterization in apple leaves of two subclasses of PR-10 transcrips inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid Physiol. Mol. Plant P. 59: 33-43.   DOI
43 Wang CS, Huang JC, Hu JH. 1999. Characterization of two subclasses of PR-10 transctipts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814.
44 Jones JB, Stall RE, Bouzar H. 1998. Diversity among xanthomonads pathogenic on pepper and tomato. Annurev. Phyto. 36: 41-58.
45 B.Jonesa. J, Lacy GH, Bouzar H, Stall RE, Schaad NW. 2004. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. System Appl. Microbiol. 27: 755-762.   DOI
46 Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, et al. 2017. Functional and promoter analysis of ChiIV3, a chitinase of pepper plant, in response to Phytophthora capsici infection. Int. J. Mol. Sci. 18: 1661.   DOI
47 Byeon SE , Abebe AM, Jegal YH, Wai KPP, Siddique MI, Mo HS et al. 2016. Characterization of sources of resistance to bacterial spot in Capsicum peppers. Kor. J. Hort. Sci. Technol. 34: 779-789.
48 Shin J-W, Yun S-C. 2010. Elevated $CO_2$ and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26: 178-184.   DOI
49 Silvar C, Merino F, Diaz J. 2008. Differential activation of defense-related genes in susceotible and resistant pepper cultivars infected with Phytophthora capsici. J. Plant Physiol. 165: 1120-1124.
50 Chakraborty S, Pangga IB, Lupton J, Hart L, Room PM, Yates D. 2000. Production and dispersal of Collectotrichum gloeosporioides spores on Stylosanthes scabra under elevated $CO_2$. Environ. Pollut. 108: 381-387.   DOI
51 Hibberd JM, Whitbread R, Farrar JF. 1996. Effect of elevated concentrations of $CO_2$ on infection of barley by Erysiphe graminis. Physiol. Mol. Plant P. 48: 37-53.   DOI
52 Bettarini I, Vaccari FP, Miglietta F. 1998. Elevated $CO_2$ concentrations and stomatal density observations from 17 plant species growing in a $CO_2$ spring in central Italy. Glob. Change Biol. 4: 17-22.   DOI
53 Wells JM. 1974. Grwoth of Erwinia carotovora, E. atroseptica and Pseudomonas fluorescens in low oxygen and high carbon dioxide atmospheres. Phyopathol. 64: 1012-1015.   DOI
54 Jones C, Robertson E, Arora V, Friedlingstein P, Shevliakova E, Bopp L, et al. 2016. Twenty-first-century compatible $CO_2$ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clinmate. 26: 4398-4413.
55 Coakley SM, Seherm H, Chakraborty S. 1999. Climate change and plant disease menagement. Annu. Rev. Phytopathol. 37: 399-426.   DOI
56 Manning WJ, Tiedemann AN. 1995. Climate change: Potential effects of increased atmospheric carbon dioxide ($CO_2$), ozone (O3), and ultraviolet (UV-B), radiation on plant diseases. Environ. Pollut. 88: 219-245.   DOI
57 Mitchell DJ, Zentmyer GA. 1971. Effect of oxygen and carbon dioxide tensions on gowth of several species of Phytophthora. Phyopathol. 61: 787-791.   DOI
58 Mesarich CH, Stergiopoulos I, Beenen HG, Cordovez V, Guo Y, Jashni MK, et al. 2016. A conserved proline residue in dothideomycete Avr4 effector proteins is required to trigger a Cf-4- dependent hypersensitive response. Mol. Plant Pathol. 17: 84-95.   DOI
59 Chakraborty S, Luck J, Hollaway G, Freeman A, Norton R, Garrett KA, et al. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutr. Nat. Resour. 3: 1-15.
60 Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, et al. 2002. Altered performance of forest pests under atmospheres enriched by $CO_2$ and $O_3$. Nature 420: 403-407.   DOI
61 Roeschlin RA, Favaro MA, Chiesa MA, Alemano S, Vojnov AA, Castagnaro AP, et al. 2017. Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. Mol. Plant Pathol. 18: 1267-1281.   DOI
62 Hayashi K, Fujita Y, Ashizawa T, Suzuki F, Nagamura Y, Hayano- Saito Y. 2016. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Plant J. 2016: 46-56.