Browse > Article
http://dx.doi.org/10.4014/mbl.1702.02006

A Comparison of the Microbial Diversity in Korean and Chinese Post-fermented Teas  

Kim, Byung-Hyuk (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Jang, Jong-Ok (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Joa, Jae-Ho (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Kim, Jin-Ah (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Song, Seung-Yeob (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Lim, Chan Kyu (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Kim, Chun Hwan (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Jung, Young Bin (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Seong, Ki-Cheol (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Kim, Hee-Sik (Cell Factory Research Center, KRIBB)
Moon, Doo-Gyung (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.1, 2017 , pp. 71-80 More about this Journal
Abstract
Tea is the most popular beverage in the world. The three main types are green, black, and post-fermented. Post-fermented teas are produced by the microbial fermentation of sun-dried green tea leaves (Camellia sinensis). In this study, the composition of the bacterial communities involved in the production of traditional oriental post-fermented teas (Korean algacha, dancha, and Chinese pu-erh) were investigated using 16S rRNA gene analysis. The dominant microorganisms present in the post-fermented teas included the ${\alpha}$-proteobacteria Rhodobacteraceae and Sphingomonas, and the ${\gamma}$-proteobacteria Pantoea. Cluster analysis confirmed that the microbial populations present in both Korean and Chinese post-fermented teas grouped into the same class. Interestingly, the dominant microorganism present in the Korean post-fermented teas was a bacterium, while for the Chinese post-fermented tea, it was a fungus.
Keywords
Camellia sinensis; double gradient-DGGE; microbial community; post-fermented tea; tea;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee JW, Kim BH, Ahn CY, Kim HS, Yoon BD, Oh HM. 2005. Analysis of microbial community during the anaerobic dechlorination of Perchloroethylene and Trichloroethylene. Korean J. Microbiol. 41: 281-286.
2 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI
3 Murray AE, Hollibaugh JT, Orrego C. 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel elctrophoresis of 16s rRNA fragments. Appl. Environ. Microbiol. 62: 2676-2680.
4 Nakayama T, Watanabe S, Mitsui K, Uchida H, Inouye I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55.   DOI
5 Kim BH, Ramanan R, Cho DH, Choi GG, La HJ, Ahn CY, et al. 2012. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One. 7: e37770.   DOI
6 Cremonesi L, Firpo S, Ferrari M, Righetti PG, Gelfi C. 1997. Double-gradient DGGE for optimized detection of DNA point mutations. BioTechniques. 22: 326-330.
7 Petri R, Imhoff JF. 2001. Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol. 2001: 24.
8 Scarpellini P, Braglia S, Carrera P, Cedri M, Cichero P, Colombo A, et al. 1999. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob. Agents Chemother. 43: 2550-2554.
9 Baik KS, Seong CN, Hwang YM, Kim GA, Lee NR, Kim D, et al. 2012. Micorbial diversity of Ddek cha using DNA sequence analysis. J. Korean Tea Soc. 18: 86-91.
10 Shim HJ, Cho JY, Moon JH, Kim SJ, Kim D, Shibn KH, Park KH. 2013. Changes of bacterial communites in microbial-fermented tea during fermentation. J. Korean Tea Soc. 19: 91-98.
11 Aylward FO, McDonald BR, Adams SN, Valenzuela A, Schmidt Ra, Goodwin LA, et al. 2013. Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl. Environ. Microbiol. 79: 3724-3733.   DOI
12 Zeida M, Wieser M, Yoshida T, Sugio T, Nagasawa T. 1998. Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T71. Appl. Environ. Microbiol. 64: 4743-4747.
13 Zhao Y, Zhong GF, Yang XP, Hu XM, Mao DB, Ma YP. 2015. Bioconversion of lutein to form aroma compounds by Pantoea dispersa. Biotechnol. Lett. 37: 1687-1692.   DOI
14 Adriaenssens EM, Guerrero LD, Makhalanyane TP, Aislabie JM, Cowan DA. 2014. Draft genome sequence of the aromatic hydrocarbon-degrading bacterium Sphingobium. sp. strain Ant17, isolated from antarctic soil. Genome Announc. 2: e00212.
15 Yi L, Su G, Hu G, Peng Q. 2016. Diversity study of microbial community in bacon using metagenomic analysis. J. Food Saf. DOI 10.1111/jfs.12334.   DOI
16 Nam YD, Park SI, Lim SI. 2012. Microbial composition of the Korean traditional food "kochujang" analyzed by a massive sequencing technique. J. Food Sci. 77: M250-M256.   DOI
17 Peng Q, Yang Y, Guo Y, Han Y. 2015. Analysis of bacterial diversity during acetic acid fermentation of Tianjin Duliu aged vinegar by 454 pyrosequencing. Curr. Microbiol. 71: 195-203.   DOI
18 Kim MJ, Kwak HS, Jung HY, Kim SS. 2016. Microbial communities related to sensory attribbutes in Korean fermented soy bean paste (doenjang). Food Res. Int. 89: 724-732.   DOI
19 Tian J, Zhu Z, Wu B, Wang L, Liu X. 2013. Bacterial and fungal communities in Pu'er tea samples of different ages. J. Food Sci. 78: M1249-M1256.   DOI
20 Koh SC, Choi JH, Kim BH, Kim SE. 2008. Effect of quartz porphyry on growth of creeping bentgrss (Agrostis stolohifera) and soil bacterial community structures. Korean J. Microbiol. 44: 317-325.
21 Zhao ZJ, Tong HR, Zhou L, Wang EX, Liu QJ. 2010. Fungal colonization of Pu-erh in Yunnan. J. Food Saf. 30: 769-784.   DOI
22 Weinreb O, Amit T, Mandel S, Youdim MB. 2009. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Gene Nutr. 4: 283-296.   DOI
23 Ho CT, Lin JK, Shahidi F. 2008. Tea and tea products: chemistry and health-promoting properties. CRC press, Boca Raton.
24 Zaveri NT. 2006. Green tea and its polyphenolic catechins: medicinal used in cancer and noncancer application. Life Sci. 78: 2073-2080.   DOI
25 Basu A, Lucas EA. 2007. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 65: 361-375.   DOI
26 Heo BG, Park YS, Chon SU, Lee SY, Cho JY, Gorinstein S. 2007. Antioxidant activity and cytotoxicity of methnol extracts from aerial partsw of Korean salad plants. BioFactors. 30: 79-89.   DOI
27 Yang CS, Wang X, Lu G, Picinich SC. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 9: 429-439.   DOI
28 Shon MY, Kim SH, Nam SH, Park SK, Sung NJ. 2004. Antioxidant activity of Korean green and fermented tea extracts. J. Life Sci. 14: 920-924.   DOI
29 Lv H-P, Zhang YJ, Lin Z, Liang YR. 2013. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 53: 608-618.   DOI
30 Zhang L, Zhang ZZ, Zhou YB, Ling TJ, Wan XC. 2013. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 53: 600-607.   DOI
31 Chen YS, Liu BL, Chang YN. 2010. Bioactivities and sensory evaluation of Pu-erh teas made from three tea liaves in an imporved pile fermentation process. J. Biosci. Bioeng. 109: 557-563.   DOI
32 Zhao M, Xiao W, Ma Y, Sun T, Yuan W, Tang N, et al. 2013. Sturcture and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library. World J. Microbiol. Biotechnol. 29: 1877-1884.   DOI
33 Zhang W, Yang R, Fang W, Yan L, Lu J, Sheng J, Lv J. 2016. Characterization of thermohilic fungal community associated with pile fermentation of Pu-erh tea. Int. J. Food Microbiol. 227: 29-33.   DOI
34 Abe M, Takaoka N, Idemoto Y, Takagi C, Imai T, Nakasaki K. 2008. Characteristic fungi observed in the fermentation process for Puer tea. Int. J. Food Microbiol. 124: 199-203.   DOI
35 Zhu Y, Luo Y, Wang P, Zhao M, Li L, Hu X, Chen F. 2016. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chem. 194: 643-649.   DOI
36 Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322.   DOI
37 Kim BH, Baek KH, Cho DH, Sung Y, Ahn CY, Oh HM, et al. 2009. Analysis of microbial community during the anaerobic dechlorination of tetrachloroethylene (PCE) in stream of Gimpo and Inchon areas. Kor. J. Microbiol. 45: 140-147.
38 Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. 2014. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass & Bioenergy. 69: 95-105.   DOI
39 Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, Oh H-M, Kim H-S. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578-585.   DOI
40 Kim BH, Baek KH, Cho DH, Sung Y, Koh SC, Ahn CY, et al. 2010. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnol. Lett. 32: 1829-1835.   DOI
41 Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
42 Jaspers E, Nauhaus K, Cypionka H, Overmann J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36: 153-164.   DOI
43 Ishii K, Fukui M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753-3755.   DOI
44 Forney LJ, Zhou X, Brown CJ. 2004. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol. 7: 210-220.   DOI