Browse > Article
http://dx.doi.org/10.4014/mbl.1611.11003

Xylitol Production by Kluyveromyces marxianus 36907-FMEL1 at High Temperature was Considerably Increased through the Optimization of Agitation Conditions  

Kim, Jin-Seong (Department of Bioengineering and Technology, Kangwon National University)
Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University)
Jang, Seung-Won (Department of Bioengineering and Technology, Kangwon National University)
Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University)
Hong, Eock Kee (Department of Bioengineering and Technology, Kangwon National University)
Shin, Won Cheol (Department of Bioengineering and Technology, Kangwon National University)
Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.1, 2017 , pp. 57-62 More about this Journal
Abstract
Recently, we isolated the mutant Kluyveromyces marxianus 36907-FMEL1, which demonstrated improved xylose reductase activity as compared to the parental strain, K. marxianus ATCC 36907. Effects of agitation conditions on xylitol production were verified using a bioreactor system. Under an agitation speed of 400 rpm, K. marxianus 36907-FMEL1 exhibited the highest xylitol yield (0.57 g/g) and productivity ($0.64g{\cdot}l^{-1}{\cdot}h^{-1}$) at $30^{\circ}C$. When the fermentation temperature was increased to $40^{\circ}C$, interestingly, xylitol yield and productivity were found to be increased to 21% (0.64 g/g) and 58% ($0.90g{\cdot}l^{-1}{\cdot}h^{-1}$), respectively, under the optimized agitation conditions.
Keywords
Kluyveromyces marxianus; xylitol; productivity; agitation conditions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 da Silva DDV, de Arruda PV, Vicente FMCF, Sene L, da Silva SS, andde Almeida Felipe MdG. 2015. Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann. Microbiol. 65: 687-694.   DOI
2 Fonseca G, Heinzle E, Wittmann C, Gombert A. 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354.   DOI
3 Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374.   DOI
4 Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, et al. 2004. Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Department of Energy Washington DC. No. DOE/GO-102004-1992.
5 Rodrigues RLB, Kenealy W, Jeffries T. 2011. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J. Ind. Microbiol. Biotechnol. 38: 1649-1655.   DOI
6 Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, et al. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Nat. Biotechnol. 9: 1090-1095.   DOI
7 Jang SW, Kim JS, Park JB, Jung JH, Park CS, Shin WC, et al. 2015. Characterization of the starch degradation activity from newly isolated Rhizopus oryzae WCS-1 and mixed cultures with Saccharomyces cerevisiae for efficient ethanol production from starch. Food Sci. Biotechnol. 24: 1805-1810.   DOI
8 Akinterinwa O, Cirino PC. 2009. Heterologous expression of dxylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 11: 48-55.   DOI
9 Zhang J, Zhang B, Wang D, Gao X, Hong J. 2014. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour. Technol. 152: 192-201.   DOI
10 Park JB, Kim JS, Jang SW, Hong E, Ha SJ. 2015. The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production. KSBB J. 30: 125-131.   DOI
11 Kim JS, Park JB, Jang SW, Ha SJ. 2015. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity. Appl. Biochem. Biotechnol. 176: 1975-1984.   DOI
12 Rodrigues F, Ludovico P, Leao C. 2006. Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism, pp. 101-121. Biodiversity and Ecophysiology of Yeasts, Springe-Verlag, Heidelberg.
13 Zhang J, Zhang B, Wang D, Gao X, Hong J. 2015. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour. Technol. 175: 642-645.   DOI
14 Wilkins MR, Mueller M, Eichling S, Banat IM. 2008. Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem. 43: 346-350.   DOI
15 Kumar S, Singh SP, Mishra IM, Adhikari DK. 2009. Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J. Ind. Microbiol. Biotechnol. 36: 1483-1489.   DOI
16 Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J. 2013. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J. Ind. Microbiol. Biotechnol. 40: 305-316.   DOI