Browse > Article
http://dx.doi.org/10.4014/mbl.1702.02001

Trends and Prospects of Microfibrillated Cellulose in Bio-industries  

Jung, Young Hoon (School of Food Science and Biotechnology, Kyungpook National University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.1, 2017 , pp. 1-11 More about this Journal
Abstract
In this review, we focus on one of the most attractive biomaterials, microfibrillated cellulose (MFC). MFC, a type of nanocellulose, mainly originates from cellulose in lignocellulosic biomass. MFC represents one of incredible important natural resources due to its abundancy, renewability, and sustainability. MFC is produced through mechanical pretreatment, and it is composed of various sizes of microfibers, ranging from a few nanometers to a few micrometers. Because of the heterogenetic compositions of MFC, it possesses superior properties as a material, such as high surface area, high aspect ratio, and peculiar insolubility as a biomaterial. These properties allow MFC to be used in various bio-industries, from the traditional pulp industry to the high-tech food/bio/chemical/medical industries. However, it is difficult to use MFC on a commercial scale owing to the high energy input required during its production and the challenge of controlling its reactivity. Therefore, future studies should be focused on accurately characterizing MFC's surface morphologies, regulating its characteristics in a desirable direction, and standardizing proper guidelines for the analysis of surface morphologies its analysis.
Keywords
Microfibrillated cellulose; nanocellulose; biomaterials; surface morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kalia S, Boufi S, Celli A, Kango S. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292: 5-31.   DOI
2 Brodin FW, Gregersen OW, Syverud K. 2014. Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material-a review. Nordic Pulp Pap. Res. J. 29: 156-166.   DOI
3 Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppala J. 2012. Flocculation of microfibrillated cellulose in shear flow. Cellulose 19: 1807-1819.   DOI
4 Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A. 2013. Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20: 727-740.   DOI
5 Rosenberg M. 2016. Why microfibrillated cellulose is a completely new cellulose product. Available from: http://blog.exilva.com/why-microfibrillated-cellulose-is-a-completely-new-celluloseproduct.
6 Kalia S, Dufresne A, Cherian BM, Kaith B, Averous L, Njuguna J, et al. 2011. Cellulose-based bio-and nanocomposites: a review. Int. J. Polym. Sci. 2011: 1-35.
7 Chang C-W, Wang M-J. 2013. Preparation of microfibrillated cellulose composites for sustained release of $H_2O_2$ or $O_2$ for biomedical applications. ACS Sustainable Chem. Eng. 1: 1129-1134.   DOI
8 Islam MT, Alam MM, Zoccola M. 2013. Review on modification of nanocellulose for application in composites. Int. J. Innov. Res. Sci. Eng. Technol. 2: 5444-5451.
9 Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J. 2010. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17: 1005-1020.   DOI
10 Henriksson M, Henriksson G, Berglund L, Lindstrom T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 43: 3434-3441.   DOI
11 Eriksson M, Pettersson G, Wagberg L. 2005. Application of polymeric multilayers of starch onto wood fibres to enhance strength properties of paper. Nordic Pulp Pap. Res. J. 20: 270-275.   DOI
12 Jung YH, Kim HK, Park HM, Park Y-C, Park K, Seo J-H, et al. 2015. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour. Technol. 179: 467-472.   DOI
13 Hassan EA, Hassan ML, Oksman K. 2011. Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci. 43: 76-82.
14 Balea A, Merayo N, De La Fuente E, Negro C, Blanco A. 2017. Assessing the influence of refining, bleaching and TEMPOmediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Ind. Crops Prod. 97: 374-387.   DOI
15 Saito T, Isogai A. 2005. A novel method to improve wet strength of paper. Tappi J. 4: 3-8.
16 Ahola S, Turon X, Osterberg M, Laine J, Rojas O. 2008. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24: 11592-11599.   DOI
17 Svending P. 2014. Commercial break-through in MFC processing. in 2014 TAPPI international conference on nanotechnology for renewable materials. Vancouver.
18 Lee JW, Kim HU, Choi S, Yi J, Lee SY. 2011. Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 22: 758-767.   DOI
19 Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580.   DOI
20 Loque D, Scheller HV, Pauly M. 2015. Engineering of plant cell walls for enhanced biofuel production. Curr. Opin. Plant Biol. 25: 151-161.   DOI
21 Jung YH, Park HM, Kim IJ, Park Y-C, Seo J-H, Kim KH. 2014. Onepot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Adv. 4: 55318-55327.   DOI
22 Turbak AF, Snyder FW, Sandberg KR. 1982. Food products containing microfibrillated cellulose. Patents.
23 Torvinen K, Kouko J, Passoja S, Keranen J, Hellen E. 2014. Cellulose micro and nanofibrils as a binding material for high filler content papers. Proc., TAPPI Paper Con 2014.
24 Perez DDS, Tapin-lingua S, Lavalette A, Barbosa T, Gonzalez I, Siqueira G, et al. 2010. Impact of micro/nanofibrillated cellulose preparation on the reinforcement properties of paper and composites films. in TAPPI International Conference on Nanotechnology for Renewable Materials.
25 Manninen M, Kajanto I, Happonen J, Paltakari J. 2011. The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nordic Pulp Pap. Res. J. 26: 297.   DOI
26 Svending P, da Costa ES. 2016. Microfibrillated cellulose proven to create value in full scale papermaking. O Papel: revista mensal de tecnologia em celulose e papel 77: 79-81.
27 Stephen AM. 1995. Food polysaccharides and their applications. Vol. 67, CRC press.
28 Wustenberg T. 2014. Cellulose and cellulose derivatives in the food industry: fundamentals and applications. John Wiley & Sons.
29 Strom G, Ohgren C, Ankerfors M. Nanocellulose as an additive for foodstuff. Innventia Report 403 2013; Available from: http://217.114.91.26/Documents/Rapporter/Innventia%20report403.pdf.
30 Oh EJ, Ha S-J, Rin Kim S, Lee W-H, Galazka JM, Cate JHD, et al. 2013. Enhanced xylitol production through simultaneous coutilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabol. Eng. 15: 226-234.   DOI
31 Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al. 2011. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. NREL/TP-5100-47764, Golden, CO; Available from: http://www.nrel.gov/docs/fy11osti/47764.pdf.
32 Jonsson LJ, Alriksson B, Nilvebrant N-O. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16.   DOI
33 Turbak AF, Snyder FW, Sandberg KR. 1985. Micro-fibrillated cellulose and process for producing it. Patents.
34 Turbak AF, Snyder FW, Sandberg KR. 1983. Suspensions containing microfibrillated cellulose. Patents.
35 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. 1983. Microfibrillated cellulose: morphology and accessibility. in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States). ITT Rayonier Inc., Shelton, WA.
36 Boluk Y, Lahiji R, Zhao L, McDermott MT. 2011. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf. A: Physicochem. Eng. Asp. 377: 297-303.   DOI
37 Kumar V, Nazari B, Bousfield D, Toivakka M. 2016. Rheology of mcrofibrillated cellulose suspensions in pressure-driven flow. Ind. Eng. Chem. Res. 55: 3603-3613.   DOI
38 Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, et al. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohyd. Polym. 80: 677-686.   DOI
39 Ding S-Y, Himmel ME. 2006. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54: 597-606.   DOI
40 Zhu H, Fang Z, Preston C, Li Y, Hu L. 2014. Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7: 269-287.   DOI
41 Osong SH. 2014. Mechanical pulp based nano-ligno-cellulose production: characterisation and their effect on paper properties. PhD Thesis. Mid Sweden University.
42 Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V. 2016. Nanocellulose based polymer composites for applications in food packaging: future prospects and challenges. Polym. Plast. Technol. Eng., accepted.
43 Haoran W, Katia R, Scott R, Peter JV. 2014. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci.: Nano, 1: 302.   DOI
44 Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, et al. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8: 1934-1941.   DOI
45 Brodin FW, Lund K, Brelid H, Theliander H. 2012. Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 19: 1413-1423.   DOI
46 Saarikoski E, Saarinen T, Salmela J, Seppala J. 2012. Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19: 647-659.   DOI
47 Ono H, Matsui T, Miyamoto I. 2003. Cellulose dispersion. Patents.
48 Mueller S, Llewellin EW, Mader HM. 2010. The rheology of suspensions of solid particles. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 466: 1201-1228.   DOI
49 Carpenter AW, de Lannoy C-F, Wiesner MR. 2015. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49: 5277-5287.   DOI
50 Mautner A, Lee K-Y, Tammelin T, Mathew AP, Nedoma AJ, Li K, et al. 2015. Cellulose nanopapers as tight aqueous ultra-filtration membranes. React. Func. Polym. 86: 209-214.   DOI
51 Chen D, Yang X, He Z, Ni Y. 2016. Potential of cellulose-based materials for lithium-ion batteries (LIB) separator membranes. J. Bioresour. Bioprod. 1: 18-21.
52 El Baradai O, Beneventi D, Alloin F, Bongiovanni R, Bruas-Reverdy N, Bultel Y, et al. 2016. Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrodes in lithium ion batteries. J. Mater. Sci. Technol. 32: 566-572.   DOI
53 Zolin L, Destro M, Curtil D, Chaussy D, Penazzi N, Beneventi D, et al. 2014. Flexible cellulose-based electrodes: Towards ecofriendly all-paper batteries. Chem. Eng. Trans. 361-366.
54 Rebouillat S, Pla F. 2013. State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J. Biomat. Nanobiotechnol. 4: 165.   DOI
55 Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG, 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biolog. Macromol. 14: 170-172.   DOI
56 Nickerson R, Habrle J. 1947. Cellulose intercrystalline structure. Ind. Eng. Chem. 39: 1507-1512.   DOI
57 Ranby BG. 1951. Fibrous macromolecular systems: cellulose and muscle: the colloidal properties of cellulose micelles. Disc. Faraday Soc. 11: 158-164.   DOI
58 Miller J. Nanocellulose: state of the industry. Tappinano report 2015; Available from: http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industrydec-2015.pdf.
59 Rouhianen J, Tsitko I, Vippola M, Koivisto J. 2010. Literature study on risks and risk assessment methods related to nanobased products and the recommended methodology for assessing risk of nano-fibrillar cellulose products. Scale-up Nanoparticles in Modern Papermaking-SUNPAP FP7, Theme 4, NMP-Nanosciences, Nanotechnologies, Materials and New Production Technologies.
60 Marchessault RH, Morehead FF, Walter NM. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184: 632-633.   DOI
61 Revol J-F, Godbout L, Gray D. 1998. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J. Pulp Paper Sci. 24: 146-149.
62 Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Technol. 6: 351-355.   DOI
63 Osong SH, Norgren S, Engstrand P. 2016. Processing of woodbased microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23: 93-123.   DOI
64 Ankerfors M. 2012. Microfibrillated cellulose: energy-efficient preparation techniques and key properties. PhD Thesis. KTH Royal Institute of Technology.
65 Lindstrom T, Winter L. 1988. Mikrofibrillar cellulosa som komponent vid papperstillverkning. Internal STFI Report C 159: 1988.
66 Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, et al. 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50: 5438-5466.   DOI
67 Kramer KJ, Masanet E, Xu T, Worrell E. 2009. Energy efficiency improvement and cost saving opportunities for the pulp and paper industry. An energy star guide for energy and plant managers. Berkeley, US: Energy Analysis Department, University of California.
68 Rouhiainen J, Vaananen V, Tsitko I, Kautto J. 2012. Risk assessment of nanofibrillated cellulose in occupational settings. in SUNPAP Final conference.
69 Pitkanen M, Sneck A, Hentze H, Sievanen J, Hiltunen J, Hellen E, et al. 2010. Nanofibrillar cellulose: assessment of cytotoxic and genotoxic properties in vitro. in 2010 Tappi International conference on nanotechnology for the forest products industry.
70 McLauchlin AR. 2009. Development of a novel organoclay for poly (lactic acid) nanocomposites. PhD Thesis. Andrew Robert McLauchlin.
71 Siro I, Plackett D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459-494.   DOI
72 Lavoine N, Desloges I, Dufresne A, Bras J. 2012. Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90: 735-764.   DOI
73 Turbak AF, Snyder FW, Sandberg KR. 1983. Microfibrillated cellulose. Patents.
74 Turbak AF, Synder FW, Sandberg KR. 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In A. Sarko (ed.) Proceedings of the Ninth Cellulose Conference, Applied Polymer Symposia, 37, New York, N.Y., USA: Wiley. pp. 815-827. ISBN 0-471-88132-5.
75 Saito T, Isogai A. 2004. TEMPO-mediated oxidation of native cellulose: the effect of oxidation conditions on chemical and crystal structures of the water-Insoluble fractions. Biomacromolecules 5: 1983-1989.   DOI
76 Lane J. The strange world of super-strong, super-light nanocellulose. Biofuelsdigest 2014; Available from: http://www.biofuelsdigest.com/bdigest/2014/10/29/the-strange-world-of-super-strongsuper-light-nanocellulose/.
77 Siqueira G, Bras J, Dufresne A. 2010. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2: 728.   DOI
78 Aulin C, Gallstedt M, Lindstrom T. 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17: 559-574.   DOI
79 Charreau H, Foresti ML, Vazquez A. 2013. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol. 7: 56-80.   DOI