Browse > Article
http://dx.doi.org/10.4014/kjmb.1411.11003

Purification and Characterization of an Antimicrobial Substance from Bacillus subtilis HH28 Antagonistic to Bacillus cereus  

Cha, Hyun A (Division of Biological Science and Technology, Yonsei University)
Chung, Dawn (Department of Obstetrics and Gynecology, Wonju College of Medicine, Yonsei University)
Hong, Sung Wook (World Institute of Kimchi)
Chung, Kun Sub (Division of Biological Science and Technology, Yonsei University)
Publication Information
Microbiology and Biotechnology Letters / v.42, no.4, 2014 , pp. 393-401 More about this Journal
Abstract
A bacterium producing antimicrobial substance was isolated from cheonggukjang. The bacterium was identified as a strain of Bacillus subtilis by 16S rDNA sequencing and designated as Bacillus subtilis HH28. The antimicrobial substance produced from Bacillus subtilis HH28 was purified by 0-80% ammonium sulfate precipitation, DEAE-sepharose FF column chromatography, and Sephacryl S-200 HR gel chromatography. The molecular weight of the purified antimicrobial substance was estimated to be approximately 3,500 Da using Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and direct detection analysis. Antimicrobial substance from B. subtilis HH28 not only inhibited B. cereus, but also Listeria monocytogenes and Vibrio parahaemolyticus. The purified antimicrobial substance was stable at $40-80^{\circ}C$, and between pH 2 and 8. Antimicrobial activity of the purified substance was completely destroyed by treatment of protease, proteinase K, and pronase E, indicating that it is proteinaceous.
Keywords
Purification; antimicrobial substance; Bacillus subtilis; Bacillus cereus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Andersson A, Ronner U, Granum PE. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28: 45-155.
2 Abriouel H, Franz CM, Ben Omar N, Galvez A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232.   DOI   ScienceOn
3 Bhunia AK, Johnson MC, Ray B. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. 2: 319-322.   DOI
4 Edman P, Begg G. 1967. A protein sequenator. Eur. J. Biochem. 1: 80-91.   DOI   ScienceOn
5 Guo Y, Yu Z, Xie J, Zhang R. 2012. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance. J. Microbiol. 50: 452-458.   DOI   ScienceOn
6 He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73: 168-178.   DOI   ScienceOn
7 Mah JH, Kim KS, Park JH, Byun MW, Kim YB, Hwang HJ. 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp. isolated from Kimchi. J. Microbiol. Biotechnol. 11: 577-584.
8 Jack RW, Tagg JR, Ray B. 1995. Bacteriocin of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
9 Jung WJ, Mabood F, Souleimanov A, Zhou X, Jaoua S, Kamoun F, Smith DL. 2008. Stability and antibacterial activity of bacteriocins produced by Bacillus thuringiensis and Bacillus thuringiensis ssp. kurstaki. J. Microbiol. Biotechnol. 18: 1836-1840.
10 Kindoli S, Lee HA, Kim JH. 2012a. Properties of a bacteriocin from Bacillus subtilis H27 isolated from Cheonggukjang. J. Microbiol. Biotechnol. 21: 1745-1751.
11 Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85.   DOI
12 Lawton EM, Ross RP, Hill C, Cotter PD. 2007. Two-peptide lantibiotics: a medical perspective. Mini. Rev. Med. Chem. 7: 1236-1247.   DOI
13 Lee NK, Yeo IC, Park JW, Kang BS, Hahm YT. 2010. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus. J. Biosci. Bioeng. 110: 298-303.   DOI   ScienceOn
14 Paik SH, Chakicherla A, Hansen JN. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273: 23134-23142.   DOI
15 Marx R, Stein T, Entian KD, Glaser SJ. 2001. Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization timeof- flight mass spectrometry. J. Protein Chem. 20: 501-506.   DOI   ScienceOn
16 Nicolas GG, LaPointe G, Lavoie MC. 2011. Production, purification, sequencing, and activity spectra of mutacins D-123.1 and F-59.1. BMC. Microbiol. 11: 69.   DOI
17 Ohnishi ST, Barr JK. 1978. A simplified method of quantitation protein using the biuret and phenol reagents. Anal. Biochem. 86: 193-200.   DOI   ScienceOn
18 Sass P, Jansen A, Szekat C, Sass V, Sahl HG, Bierbaum G. 2008. The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus. BMC. Microbiol. 8: 186-197.   DOI
19 Schagger H. 2006. Tricine-SDS-PAGE. Nature protocols. 1.
20 Sonenshein AL, Hoch JA, Losick R. 1993. Bacillus subtilis and other gram positive bacteria: biochemistry, physiology and molecular genetics. pp. 120-142. ASM press, Washington, D.C.
21 Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, et al. 2002. Two different lantibiotic like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J. Bacteriol. 184: 1703-1711.   DOI   ScienceOn
22 Sirtori LR, Cladera-Olivera F, Lorenzini DM, Tsai SM, Brandelli A. 2006. Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 52: 357-363.   DOI   ScienceOn
23 Stein T. 2008. Whole-cell matrix-assisted laser desorption/ ionization mass spectrometry for rapid identification of bacteriocin/ lantibiotic-producing bacteria. Rapid Commun Mass Spectrom. 22: 1146-1152.   DOI   ScienceOn
24 Sutyak KE, Anderson RA, Dover SE, Feathergill KA, Aroutcheva AA, Faro S, et al. 2008. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis. Obstet. Gynecol. 8: 1-6.
25 Sirtori LR, Motta Ade S, Brandelli A. 2008. Mode of action of antimicrobial peptide P45 on Listeria monocytogenes. J. Basic Microbiol. 48: 393-400.   DOI
26 Turnbull PC, Kramer JM, Jorgensen K, Gilert RJ, Meling J. 1979. Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am. J. Clin. Nutr. 32: 219-228.   DOI
27 Tagg J, Mcgiven AR. 1971. Assay system for bacteriocin. Appl. Environ. Microbiol. 21: 943-948.
28 Xie J, Zhang R, Shang C, Guo Y. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8: 5611-5619.
29 Xu D, Wang Y, Sun L, Liu H, Li J. 2013. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahaemolyticus in shrimp. Food Control. 30: 58-61.   DOI
30 Kindoli S, Lee HA, Kim JH. 2012. Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang. J. Microbiol. Biotechnol. 22: 1092-1100.   DOI
31 Pattnaik P, Kaushik JK, Grover S, Batish VK. 2001. Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J. Appl. Microbiol. 91: 636-645.   DOI   ScienceOn
32 Yang EJ, Chang HC. 2007. Characterization of bacteriocinlike substances produced by Bacillus subtilis MJP1. Korean J. Microbiol. Biotechnol. 35: 339-346.