Browse > Article
http://dx.doi.org/10.4014/kjmb.1310.10003

Real-time Fluorescence Assay of DNA Polymerase Using a Graphene Oxide Platform  

Gang, Jongback (Department of Nano Chemistry, Gachon University)
Publication Information
Microbiology and Biotechnology Letters / v.41, no.4, 2013 , pp. 456-461 More about this Journal
Abstract
Using the different adsorption properties of ssDNA and dsDNA to GO, this study used a real time and efficient fluorescence assay to detect the enzymatic activity of the Klenow fragment with the adsorbed DNA to GO. Results showed that adsorption of fluorescein-tagged ssDNA to GO resulted in fluorescence quenching and DNA was released from GO by adding complementary DNA. In addition, fluorescence restoration was increased through a polymerization reaction by the Klenow fragment in the presence of a fluorescein-attached template, GO, and primer. Gel electrophoresis was conducted to confirm the hybridization and DNA polymerization reactions on GO.
Keywords
Graphene oxide; platform; biosensor; Klenow fragment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou Z, Zhu C, Ren J, Dong S. 2012. A graphene-based real time fluorescence assay of deoxyribonuclease I activity and inhibition. Analytica Chimica Acta 740: 88-92.   DOI   ScienceOn
2 Nelson T, Zhang B, Prezhdo OV. 2010. Detection of nucleic acids with graphene nanopores: Ab initio characterization of a novel sequencing device. Nano Lett. 10: 3237-3242.   DOI   ScienceOn
3 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. 2005. Two-dimensional gas of massless dirac femions in graphene. Nature 438: 197-200.   DOI   ScienceOn
4 Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang L. 2010. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2: 1021-1026.   DOI   ScienceOn
5 Lu C-H, Zhu C-L, Li J, Liu J-J, Chen X, Yang H-H. 2010. Using graphene to protect DNA from cleavage during cellular delivery. Chem. Commun. 46: 3116-3118.   DOI   ScienceOn
6 Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463-5467.   DOI   ScienceOn
7 Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. 2006. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110: 8535-8539.
8 Selvin PR. 2000. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7: 730-734.   DOI   ScienceOn
9 Tang Z, Wu H, Cort JR, Buchko GW, Zhang Y, Shao Y, et al. 2010. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6: 1205-1209.   DOI   ScienceOn
10 Wallace RB, Johnson PF, Tanaka S, Schold M, Itakura K, Abelson J. 1980. Directed deletion of a yeast transfer RNA intervening sequence. Science 209: 1396-1400.   DOI
11 Wang Y, Li ZH, Hu DH, Lin CT, Li JH, Lin YH. 2010. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132: 9274-9276.   DOI   ScienceOn
12 Xu F, Shi H, He X, Wang K, Ye X, Yan L, et al. 2012. A facile graphene oxide-based DNA polymerase assay. Analyst 137: 3989-3994.   DOI   ScienceOn
13 Zhou M, Zhai YM, Dong SJ. 2009. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81: 5603-5613.   DOI   ScienceOn
14 Anderson S, Gait MJ, Mayol L, Young IG. 1980. A short primer for sequencing DNA cloned in the single-stranded phage vector M13mp2. Nucl. Acids Res. 8: 1731-1743.   DOI
15 He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, et al. 2010. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20: 453-459.   DOI   ScienceOn
16 Chen H, Muller M, Gilmore KJ, Wallace GG, Li D. 2008. Mechanically strong electrically conductive and biocompatible graphene paper. Adv. Mater. 20: 3557-3561.   DOI   ScienceOn
17 Feinberg AP, Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6-13.   DOI   ScienceOn
18 Geim AK, Novoselov KS. 2007. The rise of graphene. Nature Materials 6: 183-191.   DOI   ScienceOn
19 Jang HJ, Kim YK, Kwon HM, Yeo WS, Kim DE, Min DH. 2010. A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angew. Chem. Int. Ed. 49: 5703-5707.   DOI   ScienceOn
20 Lu C-H, Li J, Liu J-J, Yang H-H, Chen X, Chen G-N. 2010. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the "nanoquencher". Chem. Eur. J. 16: 4889-4894.   DOI   ScienceOn
21 Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N. 2009. A graphene platform for sensing biomolecules. Angew. Chem. 121: 4879-4881.   DOI   ScienceOn
22 Mohanty N, Berry V. 2008. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8: 4469-4476.   DOI   ScienceOn
23 Wang Y, Li Z, Wang J, Li J, Lin Y. 2011. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trend in Biotechnol. 29: 205-212.   DOI   ScienceOn
24 Houdebine LM. 1976. Synthesis of DNA complementary to the mRNAs for the milk proteins by DNA polymerase I. Nucl. Acids Res. 3: 615-630.   DOI   ScienceOn