Browse > Article

Plant Growth Promotion Activity of Endophytic Fungi Isolated from the Roots of Calystegia soldanella  

You, Young-Hyun (Department of Life Sciences and Biotechnology, Kyungpook National University)
Yoon, Hyeok-Jun (Department of Life Sciences and Biotechnology, Kyungpook National University)
Woo, Ju-Ri (Department of Life Sciences and Biotechnology, Kyungpook National University)
Seo, Yeong-Gyo (Department of Life Sciences and Biotechnology, Kyungpook National University)
Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University)
Choo, Yeon-Sik (Department of Biology, College of National Sciences, Kyungpook National University)
Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
Kim, Jong-Guk (Department of Life Sciences and Biotechnology, Kyungpook National University)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.4, 2011 , pp. 324-329 More about this Journal
Abstract
Eight endophytic fungal strains were isolated from the roots of Calystegia soldanella from the western coast of South Korea. The culture filtrate of the eight endophytic fungi were applied to waito-c rice seedlings in order to verify potential plant growth promotion activities. The results of bioassay indicated that the Cs-9-7 fungal strain possessed the highest plant growth promotion activity. Fungal culture filtrates were analyzed to verify secondary metabolites using gas chromatography and mass spectroscopy with selected ion monitoring (GC/MS-SIM). The culture filtrate of the Cs-9-7 fungal strain was confirmed to contain gibberellins GA3 (1.229 ng/mL), GA4 (3.535 ng/mL), GA7 (1.408 ng/mL) and GA12 (0.378 ng/mL). Polymerase chain reactions (PCR) were performed so as to determine the internal transcribed spacer (ITS) regions for the identification of isolated strains with universal primers ITS-1 and ITS-4. The Cs-9-7 fungal strain, isolated from the root of C. soldanella, has been named Aspergillus tubingensis Cs-9-7.
Keywords
Aspergillus tubingensis; Calystegia soldanella; endophytic fungi; gibberellin; plant growth promotion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Williams, A. T. 1998. Integrated management methods monitoring environmental changes in coastal dune ecosystem. pp. 642-653, In K. G. Baether., H. Barth, M. Bohle- Carbonell, C. Fragakis, E. Lipiatou, P. Martin, G. Ollier, and M. Weydart (eds.), Porc. 3rd European Marine Science and Technology Conference, Brusells, European Commission 2.
2 Carter, R. W. G. 1991. Near future sea level impacts on coastal dunes landscapes. Landscape Ecol. 6: 29-39.   DOI   ScienceOn
3 Choi, W. Y., K. S. Sin, I. J. Lee, I. K. Rhee, J. H. Lee, and J. G. Kim. 2004. Isolation of gibberellin-producing Penicillium spp. from the root of Lindera obtusiloba and Vaccinium koreanum. Korean. J. Mycol. 32: 16-22.   DOI
4 Garia-Mora, M. R., J. B. Gallego-Fernandez, and F. Garcia- Novo. 2000. Plant diversity as a suitable tool for coastal dune vulnerability assessment. J. Coastal Res. 16: 990-995.
5 Hasan, H. A. 2002. Gibberellin and auxin-production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol. Immunol. Hung. 49: 105-18   DOI   ScienceOn
6 Hamayun, M., Khan, S. A., Khan, M. A., Khan, A. L., Kang, S. M., Kim, S. K., Joo, G. J., and Lee, I. J. 2009. Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World J Microbiol. Biotechnol., 25: 1785-1792.   DOI   ScienceOn
7 Hedden, P. and A. l. Phillips. 2000. Gibberellin metabolism: new insights revealed by the genes. Trands in Plant Sci. 5: 523-530.   DOI   ScienceOn
8 Hwang, J. S., Y. H. You, J. J. Bae, S. A. Khan, J. G. Kim, and Y. S. Choo. 2011. Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J. Coastal Res. 27: 544-548.   DOI
9 Kawaide, H. and T. Sassa. 1993. Accumulation of gibberellin A1 and the metabolism of gibberellin A9 to gibberellin A1 in a Phaeosphaeria sp. L 487 culture. Biosci. Biotech. Biochem. 57: 1403-1405.   DOI
10 Yamada, A., O. Takeo, D. Yosuke, O. Masatake. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience. 42: 43- 50.   DOI   ScienceOn
11 Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833.   DOI   ScienceOn
12 Lee, I. J., Foster, K., and Morgan, P. W. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant physiol. 116: 1003-1011.   DOI
13 Basiacik, K. S. and N. Aksoz. 2004. Optimization of carbon nitrogen ratio for production of gibberellic acid by Pseudomonas sp. Pol. J. Microbiol. 53: 20-117.
14 Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, I. J. Lee, S. D. Kim, I. K. Rhee, and J. G. Kim. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31: 283-287.   DOI   ScienceOn
15 Khan, S. A., M. Hamayun, H. J. Yoon. H. Y. Kim. S. J. Suh, S. K. Hwang, J. M. Kim, I. J. Lee, Y. S. Choo, U. H. Yoon, W. S. Kong, B. M. Lee, and J. G. Kim. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231.   DOI   ScienceOn
16 Kawanabe, Y., H. Yamane, T. Murayama, N. Takahashi, and T. Nakamura. 1983. Identification of gibberellin A3 in mycelia Neurospora Crassa. Agric. Biol. Chem. 47: 1693- 1694.   DOI
17 Kim, B. S., H. M. Oh, H. Kang, S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. Microb. Biotechnol. 14: 205-211.
18 Opelt, K. and G. Berg. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient poor habitats of baltic sea coast. Appl. Microbiol. 70: 6569-6579.   DOI   ScienceOn
19 Rachev, R., V. Gancheva, S. Bojkova, C. Christov, and T. Zafirova. 1997. Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg. J. Plant Physi. 12: 24-31.
20 Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee, and J. G. Kim. 2005. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15: 809-814.
21 Vazquez, M. M., S. Cesar, R. Azcon, JM. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272   DOI   ScienceOn
22 Bottini, R., F. Cassan and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503.