Browse > Article

Characterization of a Nitrogen Fixing Bacteria Mycobacterium hominis sp. AKC-10 Isolated from the Wetland  

Hong, Sun-Hwa (Department of Environmental Engineerin and Environmental Microbiology, Suwon University)
Shin, Ki-Chul (Department of Environmental Engineerin and Environmental Microbiology, Suwon University)
Lee, Eun-Young (Department of Environmental Engineerin and Environmental Microbiology, Suwon University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.3, 2010 , pp. 302-307 More about this Journal
Abstract
Nitrogen is an element need to grow plants growth. Plants take up nitrogen in the form of nitrate or ammonium. Most of plants absorb nitrogen source as fertilizers. But from 50 to 70% of fertilizers applied were washed away. This study was conducted to isolate free-living nitrogen fixing bacteria from reed and to examine its beneficial traits for developing sustainable biofertilizers. Enriched consortium obtained from a reed in Ansan was developed for the fixing of nitrogen. Nitrogen fixing bacteria isolated from an enriched culture in Congo Red Medium was analyzed by 16s rDNA sequencing. AKC-10 was isolated and shown to have excellent nitrogen fixing ability. The optimum conditions of nitrogen fixing ability were $25^{\circ}C$ ($237.50{\pm}39.65\;nmole{\cdot}mg-protein^{-1}{\cdot}h^{-1}$ and pH 7 ($168.335{\pm}12.84$ nmole/hr mg-protein). It was identified as Microbacterium hominis [(AKC-10 (similarity : 99%)]. This strain was had to IAA (indole-3-acetic acid) productivity and ACC(1-aminocyclopropane-1-carboxylic acid) deaminase activity. Therefore, Microbacterium hominis AKC-10 stimulated plant development in the soil, enhancing the efficiency of remediation.
Keywords
Mycobacterium hominis sp.; nitrogen; nitrogen fixing bacteria; plant growth-promoting rhizobacteria;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Udvardi, M. K., and D. A. Day. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 493-523.   DOI   ScienceOn
2 Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metalresistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162.   DOI   ScienceOn
3 Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentration by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68.   DOI   ScienceOn
4 Kalloniati, C., D. Tsikou, V. Lampiri, M. N. Fotelli, H. Rennenberg, I. Chatzipavlidis, C. Fasseas, P. Katinakis, and E. Flemetakis. 2009. Characterization of a Mesorhizobium loti -type carbonic anhydrase and its role in symbiotic nitrogen fixation. J. Bacteriol. 191: 2593-2660.   DOI   ScienceOn
5 Oldroyd, G. E., M. J. Harrison, and M. Udvardi. 2005. Peace talks and trade deals. Keys to long-term harmony in legumemicrobe symbioses. Plant Physiol. 137: 1205-1210.   DOI   ScienceOn
6 Whang, K. S. 2001. Taxonomic characteristics of nitrogenfixing oilgotrophic bacteria from forest soil. K. J. Microbiol. 2: 114-119.
7 Smil, V. 2001. Enriching the Earth: In Fritz Haber, Carl Bosch, and the Transformation of World Food Production. J. Econo. His. 61: 874-875.
8 Smreczak, B., B. Maliszewska-Kordybach, and S. Martyniuk. 1999. Effect of PAHs and heavy metals on activity of soil microflora. In: Bioavailability of organic xenobiotics in the environment NATO ASI Series 64: 377-380.
9 Sokhn, J., F. A. A. M. De Leij, T. D. Hart, and J. M. Lynch. 2001. Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett. Appl. Microbiol. 33: 164-168.   DOI   ScienceOn
10 White, J., J. Prell, E. K. James, and P. Poole. 2007. Nutrient sharing between symbionts. Plant Physiol. 144: 604-614.   DOI   ScienceOn
11 Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr. Microb. 32: 67-71.   DOI   ScienceOn
12 Lebeau, T., A. Braud, and K. Jezequel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ. Pollut. 153: 497-522.   DOI   ScienceOn
13 Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crop: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant soil 194: 65-79.   DOI
14 Koo, S. Y. and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metalcontaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93.   과학기술학회마을
15 Koo, S. Y. and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438.   과학기술학회마을
16 Li, J. and R. J. Kremer. 2006. Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol. Control 39: 58-65.   DOI   ScienceOn
17 Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plantgrowth promoting bacteria. J. Hazard. Mater. 166: 1154-1161.   DOI
18 Pattern, C. L. and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220.   DOI   ScienceOn
19 Prell, J. and P. Poole. 2006. Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 14: 161-168.   DOI   ScienceOn
20 Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderphores. Anal. Biochem. 160: 47-56.   DOI   ScienceOn
21 Seefeldt, L. C., M. H. Brian, and R. D. Dennis. 2009. Mechanism of mo-dependent nitrogenase. Annu. Res. Biochem. 78: 701-722.   DOI   ScienceOn
22 Siddiqui, Z. A. and K. Futai. 2009. Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plantgrowth- promoting rhizobacteria and cattle manure. Pest. Manag. Sci. 65: 943-948.   DOI   ScienceOn
23 Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603.
24 Eckert, B., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C(4)-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 51: 17-26.
25 Fijalkowska, S., K. Lisowska, and J. Dlugonski. 1998. Bacterial elimination of polycyclic hydrocarbons and heavy metals. J. Basic Microbiol. 38: 361-369.   DOI   ScienceOn
26 Frankenberger, W. T. Jr. and W. Brunner. 1983. Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47: 237-241.   DOI
27 Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393.   DOI   ScienceOn
28 Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Miccrobiol. 41: 533-536.   DOI   ScienceOn
29 Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336.   DOI   ScienceOn
30 Hardy, R. F., R. D. Holsten, E. K. Jackson, and R. C. Burns. 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43: 1185-1207.   DOI   ScienceOn
31 Kahindi, J. H. P. 1997. Oxygen, hydrogen and nitrogen fixation in Azotobacter. Soil Biol. Biochem. 29: 863-869.   DOI   ScienceOn
32 Adenipekun, C. O. and O. S. Isikhuemhen. 2008. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer). Pak. J. Biol. Sci. 11: 1634-1637.   DOI   ScienceOn
33 Adeniyi, A. A. and O. J. Owoade. 2009. Total petroleum hydrocarbons and trace heavy metals in roadside soils along the Lagos-Badagry expressway, Nigeria. Environ. Monit. Assess. Published online, 24 July.
34 Burd, G. I., D. G. Dixon, and B. R. Glick. 2000. Plant growthpromoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237-245.   DOI   ScienceOn
35 Ahn, T. S., J. O. Ka, G. H. Lee, and H. G. Song. 2007. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria. J. Microbiol. 45: 171-174.   과학기술학회마을
36 Aslantas, R., C. Ramazan, and F. Sahin. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Horticamsterdam. 111: 371-377.   DOI   ScienceOn
37 Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248-54.   DOI   ScienceOn