Browse > Article

Optimizing the Production of 5-Aminolevulinic Acid by Recombinant Escherichia coli Containing the Rhodobacter capsulatus hemA Gene  

Yang, Dong-Soo (Abson BioChemica Lab)
Park, Moon-Won (Abson BioChemica Lab)
Lim, Soo-Jin (Department of Animal Resources Science, Dankook University)
Kim, Min-Jeong (Department of Animal Resources Science, Dankook University)
Shin, Yu-Ri (Department of Animal Resources Science, Dankook University)
Park, Chan-Soo (EASY BIO System, Inc)
Hyun, Young (EASY BIO System, Inc)
Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
Publication Information
Microbiology and Biotechnology Letters / v.37, no.2, 2009 , pp. 153-159 More about this Journal
Abstract
Recombinant Escherichia coli BLR(DE3) harboring the hemA gene from Rhodobacter capsulatus under the control of a constitutive promoter, which we constructed previously, was used for the extracellular production of 5-aminolevulinic acid (ALA). The effects of several factors on ALA production were investigated in flask culture. ALA production by the recombinant E. coli was more efficient at $30^{\circ}C$ than $37^{\circ}C$. The glycine concentration had an important effect on cell growth. Glycine and succinic acid concentration of 5-10 and 10-20 g/L, respectively, resulted in high ALA production. In addition, the partial replacement of succinic acid by sodium glutamate increased the ALA production. The ALA production was inhibited by the presence of glucose in the medium. Using the optimal conditions, an ALA concentration of 8.2 g/L was achieved in jar fermentation without an added inducer or ALA dehydratase inhibitor; this is the highest reported concentration.
Keywords
5-Aminolevulinic acid; recombinant Escherichia coli; glycine; succinic acid; glutamate; glucose;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Avissar, Y. J. and S. I. Beale. 1989. Identification of the enzymatic basis for $\"{a}$-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J. Bacteriol. 171: 2919-2924   DOI   PUBMED
2 Bykhovsky, V. Y., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin $B_{12}$ biosynthesis. Critical Rev. Biotechnol. 17(1): 21-37   DOI   ScienceOn
3 Chen, Y. J., J. H. Cho, J. S. Yoo, Y. Wang, Y. Huang, I. H. Kim. 2008. Evaluation of ä-aminolevulinic acid on serum iron status, blood characteristics, egg performance and quality in laying hens. Asian-Aust. J. Anim. Sci. 21: 1355-1360   DOI
4 Dempsey, W. B. 1973. Lysis of Escherichia coli by glycine is potentiated by pyridoxine starvation. J. Bacteriol. 116(1): 373-377   PUBMED
5 Lee, D.-H., W.-J. Jun, K.-M. Kim, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using Dglucose. Enz. Microbial Technol. 32: 27-34   DOI   ScienceOn
6 Lo, T. C. Y., K. Rayman, and H. D. Sanwal. 1972. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J. Biol. Chem. 247(19): 6323-6331   PUBMED
7 Poo, H., J. J. Song, S.-P. Hong, Y.-H. Choi, S. W. Yun, J.-H. Kim, S. C. Lee, S.-G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-aaa. Biotechnol. Lett. 24: 1185-1189   DOI   ScienceOn
8 Rebeiz, C. A., A. Montaxer-Zouhool, H. Hopen, and S, M. Wu. 1984. Photodynamic herbicides. I. Concepts and phenomenology. Enzyme Microb. Technol. 6: 390-401   DOI   ScienceOn
9 Shin, J.-A., Y. D. Kwon, O.-H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17(9): 1579-1584   과학기술학회마을   ScienceOn
10 Kikuchi, G., A. Kumor, P. Talmage, and D. Shemin. 1958. The enzymatic synthesis of ä-aminolevulinic acid. J. Biol. Chem. 233: 1214-1219   PUBMED
11 Hammets, W., K. H. Schleifer, and O. Kandler. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116(2): 1029-1053   PUBMED
12 Halpern, Y. S., A. Ecen-shoshan, and M. Artman. 1964. Effect of glucose on the utilization of succinate and the activity of tricarboxylic acid-cycle enzymes in Escherichia coli. Biochim Biophys Acta. 93: 228-236   PUBMED   ScienceOn
13 Choi, C., B.-S. Hong, H.-C. Sung, H.-S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554   DOI   ScienceOn
14 Mateo, R. D., J. L. Morrow, J. W. Dailey, F. Ji, S. W. Kim. 2006. Use of delta-aminolevulinic acid in swine diet: effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs. Asian-Aust. J. Anim. Sci. 1: 97-101
15 Han, L., M. Doverskog, S. O. Enfors, and L. Häggström. 2002. Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by (13)C NMR spectroscopy. J. Biotechnol. 92(3): 237-249   DOI   ScienceOn
16 Nam, T.-W., Y.-H. Park, H.-J. Jeong, S. Ryu, and Y.-J. Seok. 2005. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP·cAMP complex. Nucleic Acids Res. 33(21): 6712-6722   DOI   ScienceOn
17 Sasikala, Ch., Ch. V. Ramana, and P. R. Rao. 1994. 5- Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459   DOI   ScienceOn
18 Sasaki, K., M. Watnabe, T. Tanake, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29   DOI   ScienceOn
19 Kang, D.-K., S. S. Kim, W.-J. Chi, S.-K. Hong, H. K. Kim and H. U. Kim. 2004. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the production of 5-aminolevulinic acid. J. Microbiol. Biotechnol. 14(6): 1327-1332   과학기술학회마을   ScienceOn
20 Fu, W., J. Lin, and P. Cen. 2008. Enhancement of 5- aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technol. 99: 4864-4870   DOI   ScienceOn
21 Berg, K., P. K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B${\O}$ Engesaeter, E. Angell-Petersen, T. Warloe, N. Frandsen, and A. H$\phi$gset. 2005. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 218: 133-147   DOI   ScienceOn
22 Lee, D.-H., W.-J. Jun, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2005. Effect of culture conditions on production of 5- aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69(3): 470-476   DOI   ScienceOn
23 Qin, G., J. Lin, X. Liu, and P. Cen. 2006. Effect of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102(4): 316-322   DOI   ScienceOn
24 Miyachi, N., T. Tanaka, S. Nishikawa, H. Takeya, and Y. Hotta. 1998. Preparation and chemical properties of 5- aminolevulinic acid and its derivatives. Porphyrins 7: 342-347
25 Van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566   PUBMED   ScienceOn
26 Chung S.-Y., K.-K. Seo, K.A. Han, S. H. Cho, K. H. Bak, and J. I. Rhee. 2004. Production and process monitoring of 5-aminolevulinic acid [ALA] by recombinant E. coli. I. Characteristics of ALA production. Kor. J. Biotech. Bioeng. 19(1): 17-26
27 Lee, D.-H., W.-J. Jum, J.-W. Yoon, H.-Y. Cho, and B.-S. Hong. 2004. Process strategies to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biothchnol. 14(6): 1310-1317   과학기술학회마을   ScienceOn
28 Beale, S. J. and P. A. Castelfranco. 1974. The Biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C$-$\delta$-aminolevulinic acid from labeled precursors in greening plant tissue. Plant Physiol. 53: 297-303   DOI   ScienceOn
29 Ferreira, G. and J. Gong. 1995. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J. Bioenerg. Biomembr. 27: 151-159   DOI   ScienceOn
30 Mauzerall, D and S. Granick, 1956. The occurance and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219(11): 435-446
31 Takahashi, Y. 1975. Effect of glucose and cyclic Adenosine 3', 5' monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. J. Biochem. 78(5): 1097-1100   PUBMED
32 Choi, H.-P., Y.-M. Lee, C.-W. Yun, and H.-C. Sung. 2008. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J. Microbiol. Biotechnol. 18(6): 1136-1140   과학기술학회마을   PUBMED   ScienceOn