Browse > Article

Antifungal Activity of Lactobacillus plantarum Isolated from Kimchi  

Yang, Eun-Ju (Department of Food and Nutrition, Chosun University)
Chang, Hae-Choon (Department of Food and Nutrition, Chosun University)
Publication Information
Microbiology and Biotechnology Letters / v.36, no.4, 2008 , pp. 276-284 More about this Journal
Abstract
A lactic acid bacterium having antifungal activity was isolated from kimchi. It was identified as Lactobacillus plantarum based on its morphological and biochemical properties, and 16S rRNA sequence, and designated as Lb. plantarum AF1. This isolate inhibited the growth of Aspergillus flavus ATCC 22546, A. fumigatus ATCC 96918, A. petrakii PF-1, A. ochraceus PF-2, A. nidulans PF-3, Epicoccum nigrum KF-1, and Cladosporium gossypiicola KF-2 under a dual culture overlay assay. Also, the antimicrobial activity was found to be active against various species of Gram-positive and Gram-negative bacteria. The antifungal activity was found to be stable after heat ($121^{\circ}C$, 15 min) and proteolytic enzyme treatment, but it was unstable over pH 5.0. The antifungal compound(s) was estimated to have a low molecular mass (below 3,000 Da).
Keywords
Antifungal activity; kimchi LAB; Lactobacillus plantarum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Atanossova, M., Y. Choiset, M. Dalgalarrondo, J. M. Chobert, X., Dousset, I. Ivanova, and T. Haertle. 2003. Isolation and partial biochemical characterization of proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. Int. J. Food Microbiol. 87: 63-73   DOI   ScienceOn
2 Brul, S. and P. Coote. 1999. Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50: 1-17   DOI   ScienceOn
3 Magnusson, J., J. Strögren, and J. Schnürer. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219: 129-135   DOI   ScienceOn
4 Stiles, M. E. 1996. Biopreservation by lactic acid bacteria. Antonie van Leewenhoek 70: 331-345   DOI
5 Lavermicocca, P., F. Valerio, A. Evidente, S. Lazzaroni, A. Corsetti, and M. Gobetti. 2000. Purification and chracterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66: 4084-4090   DOI
6 Sanglard, D. 2002. Resistance of human fungal pathogens to antifungal drugs. Curr. Opin. Microbiol. 5: 379-385   DOI   ScienceOn
7 Schnurer, J. and J. Magnusson. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16: 70-78   DOI   ScienceOn
8 Niku-Paavola, M. L., A. Laitila, T. Mattila-Sandholm, and A. Haikara. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86: 29-35   DOI   ScienceOn
9 Sjogren, J., J. Magnusson, A. Broberg, J. Schnurer, and L. Kenne. 2003. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 69: 7554-7557   DOI
10 Magnusson, J. and J. Schnürer. 2001. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broadspectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67: 1-5   DOI   ScienceOn
11 Galvano, F., A. Piva, A. Ritieni, and G. Galvano. 2001. Dietary strategies to counteract the effects of mycotoxins: A review. J. Food Prot. 64: 120-131   DOI   PUBMED
12 Kim, S. I., I. C. Kim, and H. C. Chang. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Kor. Soc. Food Sci. Nutr. 28: 526-533   과학기술학회마을
13 Strom, K., J. Sjogren, A. Broberg, and J. Schnurer. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and phenyl lactic acid. Appl. Environ. Microbiol. 68: 4322-4327   DOI
14 Lee, H.-J., J.-H. Baek, M. Yang, H.-U. Han, Y.-D. Ko, and H.-J. Kim. 1993. Characterizations of lactic acid bacterial community during kimchi fermentation by temperature downshift. Kor. J. Microbiol. 31: 346-353
15 Aziz, N. H. and L. A. A. Moussa. 2002. Influence of gamma-radiation on mycotoxin producing moulds and mycotoxins in fruits. Food Control 13: 281-288   DOI   ScienceOn
16 Okkers, D. J., L. M. T. Dicks, M. Silvester, J. J. Joubert, and H. J. Odendaal. 1999. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J. Appl. Microbiol. 87: 726-734   DOI   ScienceOn
17 Hoover, D. G. and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp. 23-39. In Hoover, D. G. and L. R. Steenson. (eds.), Bacteriocins of Lactic Acid Bacteria. Academic Press, Inc., San Diego, U.S.A
18 Hussein, H. S. and J. M. Brasel. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicol. 167: 101-134   DOI   ScienceOn
19 Kim, J.-D. 2005. Antifungal activity of lactic acid bacteria isolated from Kimchi against Aspergillus fumigatus. Mycobiol. 33: 210-214   과학기술학회마을   DOI
20 Klaenhammer, T. R. 1988. Bacteriocin of lactic acid bacteria. Biochim. 70: 337-349   DOI   ScienceOn
21 Gould, G. W. 2001. New processing technologies: an overview. Proc. Nutr. Soc. 60: 463-474
22 Bello, F. D., C. I. Clarke, L. A. M. Ryan, H. Ulmer, T. J. Schober, K. Strom, J. Sjogren, D. van Sinderen, J. Schnurer, and E. K. Arendt. 2007. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 45: 309-318   DOI   ScienceOn