Browse > Article

Isolation and Characterization of a Nematicidal Bacillus thuringiensis strain 108  

Lee, Jae-Hun (Department of Life Science and Biotechnology, Dong-eui university)
Ryu, Eun-Ju (Department of Cosmetology, Han-Seo University)
Kim, Kwang-Hyeon (Department of Life Science and Biotechnology, Dong-eui university)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.3, 2007 , pp. 250-254 More about this Journal
Abstract
Bacillus thringiensis strain 108 was isolated from soil and had nematicidal activity against second stage juvenile of plant root-knot nematode, Meloidogyne incognita. The strain 108, a rod shape, spore forming and Gram positive bacterium, produced lecithinase, catalase, and ${\delta}$-endotoxin. The strain 108 belongs to H serotype 3, Bacillus thuringiensis var. kurstaki. A nematicidal substance of the strain 108 was partially purified on Sephadex G-25 gel filtration, activated carbon adsorption, silica gel adsorption, and Sephadex G-10 gel filtration. $LC_{90}$ of the partially purified substance against M incognita was $1.2\;{\mu}g/ml$. The nematicidal substance was stable by heat treatment at $100^{\circ}C$ for 1hr, but was perfectly lost nematicidal activity after autoclave ($110^{\circ}C$, 30 min).
Keywords
Nematicidal toxin; Bacillus thuringiensis; Meloydogyne incognita; plant root-knot nematode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Buena, A. P., A. Garcia-Alvarez, M. A. Diez-Rojo, C. Ros, P. Fernandez, A. Lacasa, and A. Bello. 2007. Use of peper crop residues for the control of root-knot nematodes. Bioresource Technology. 98: 2846-2851   DOI   ScienceOn
2 Kerry, B., and L. Hidalgo-Diaz. 2004. Application of Pochonia chlamydosporia in the integrated control of rootknot nematodes on organically grown vegitable crops in Cuba, pp. 123-126. In R. A. Sikora, S. Gowen, R. Hauschild, S. Kiewnick (eds.), Multitrophic interactions in soil. vol, 27, 10BC/wprs Bull
3 Sharon, E., M. Bar-Eyal, I. Chet, A. Herrera-Estrella, O. Kleifeld, and Y. Spiegel. 2001. Biological control of the rootknot nematode Meloidogyne javanica by Tricoderma harzianum. Phytopathology. 91: 687-693   DOI   ScienceOn
4 Brar, A. K., M. Verma, R. D. Tyagi, R. Y. Surampalli, S. Barnabe, and J. R. Valero. 2007. Bacillus thuringiensis protease: production and role in growth, sporulation and synergism. Process Biochemistry. 42: 773-790   DOI   ScienceOn
5 Hutchinson, C. M., M. E.McGiffen, H. D. Ohr, J. J. Sims, and J. O. Becker, 1999. Efficacy of methyl iodide soil fumigation for control of Meloidogyne incognia, Tylenchulus semipenetrans and Heterodera schachtii. Nematology 1: 407-414   DOI
6 Jaffee, B. A. 2000. Augmentation of soil with the nematophagous fungi Hirsutella rhossiliensis and Arthrobotyla. Phytopathology. 90: 498-504   DOI   ScienceOn
7 Feitelson, J. S. 1993. The Bacillus thuringiensis family tree, pp. 63-71. In L. Kim (ed.), Advanced engineered pesticide. Marcel Dekker, Inc., New York, NY
8 Feitelson, J. S., J. Payne, and L. Kim. 1992. Bacillus thuringiensis: insects and beyong. Bio/Technology 10: 271-275   DOI
9 Mozgovaya, I. N., B. A. Byzov, N. F. Ryabchenko, N. D. Romanenko, and D. G Zvyagintsev. Nematicidal effects of the entomopathogenic bacteria Bacillus thuringiensis in soil. Pedobiologia 46: 558-572   DOI   ScienceOn
10 Levinson, B. L., K. J. Kasyan, S. S. Chiu, T. C. Currier and J. M. Jr. Gonzalez. 1990. Identification of $\beta$-exotoxin Production, Plasmids Encoding $\beta$-exotoxin, and a New Exotoxin in Bacillus thuringiensis by Using HighPerformance Liquid Chromatography. J. Bacteriol. 172: 3172-3179   DOI   PUBMED
11 Meyer, S. L.F. 1999. Efficacy of the fungus Verticillium lecanii for suppressing root-knot nematode egg numbers on Cantaloupe roots. HortTechnology. 9: 443-447
12 Nico, A. I., R. M. Jimenez-Diaz, and P. Castillo. 2004. Control of root-knot nematodes by composted agro-industrial wastes in potting mixtures. Crop Prot. 23: 581-587   DOI   ScienceOn
13 Lee, K. B., K. H. Kim and Y. H. Kim 1994. Isolation and characterization of Bacillus thuringiensis strain BtTH 109 which is toxic against root-knot nematode Meloidogyne incognita. Kor. J. Appl. Microbial. Biotechnol. 22: 227-232   과학기술학회마을
14 Oka, Y., N. Shapira, and P. Fine. 2007. Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot . in press
15 Lara, J., N. Acosta, C. Betancourt, N. Vincente, and R. Rodriguez. 1996. Biological control of Meloidogyne incognita in tomato in Puerto Rico. Nematropica. 26: 143-152
16 Wiwat, C, S. Thaithanun, S. Pantuwatana, and A. Bhumiratana. 2000. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J. lnvertebr. Pathol. 76: 270-277   DOI   ScienceOn
17 Hernandez, C. S., C. Martinez, M. Porcar, P. Caballero, and J. Ferre. 2003. Correlation between serovars of Bacillus thuringiensis and type I beta-exotoxin production. J. Invertebr. Pathol. 82: 57-62   DOI   ScienceOn
18 Borgonie, G, Claeys, M., Leyns, F., Amaut, G, Dewaele, and D., Coomanns, A. 1996. Effect of nematicidal Bacillus thuringiensis strains on free-living nematodes. I. Lightmicroscopic observations, species and biological stage specificity and identification of resistant mutants of Caenorhabditis elegans. Fundamental and Applied Nematology. 19: 391-398