Browse > Article

Growth and r-Linolenic Acid Production of Arthrospira (Spirulina) platensis in Heterotrophic Culture.  

Choi, Gang-Guk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Bae, Myoung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Je-Seop (Biotechnology Laboratory, R&D Center, Daesang Corporation)
Park, Bok-Jun (Biotechnology Laboratory, R&D Center, Daesang Corporation)
Ahn, Chi-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.1, 2007 , pp. 45-51 More about this Journal
Abstract
Arthrospira (Spirulina) platensis is one of the commercially important filamentous cyanobacteria. The heterotrophic cultivation of Arthrospira can be an alternative strategy for commercial mass production. In heterotrophic culture, the specific growth rate of A. platensis M9108, a glucose-resistant mutant of A. platensis PCC 9108, was $0.014h^{-1}$ which was 1.8 higher than that oi the previous report. The mutant possessed the facility to assimilate and to metabolize glucose efficiently under heterotrophic condition. However, the r-linolenic acid content of 6 Arthrospira strains was not increased in heterotrophic culture. Four Arthrospira strains out of 6 tested strains were able to utilize maltose as a carbon source under heterotrophic condition. The biomass production of these strains on maltose was similar to that on glucose. The specific growth rate of A. platensis M9108 increased with glucose concentration up to 5.0 g/L and then decreased at a glucose concentration of 10.0 g/L. Additionally, A. platensis M9108 under heterotrophic condition showed no aggregation during the cultivation in contrast to A. platensis PCC 9108.
Keywords
Arthrospira; r-linolenic acid; glucose; heterotrophic cultivation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Becker, E. W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge UK: Cambridge University Press
2 Grinstea, G. S., S. S. Tokach, R. D. Goodband, and J. L. Nelssen. 2000. Effects of Spirulina platensis on growth performance of weanling pigs. Anim. Feed Sci. Technol. 83: 237-247   DOI   ScienceOn
3 Kaji, T., Y. Fujiwara, Y. Inomata, C. Hamada, C. Yamamoto, S. Shimada, J. B. Lee, and T. Hayashi. 2002. Repair of wounded mono layers of cultured bovine aortic endothelial cells is inhibited by calcium spirulan, a novel sulfated polysaccharide isolated from Spirulina platensis. Life Sci. 70: 1841-1848   DOI   ScienceOn
4 Marquez, F. J., K. Sasaki, T. Kakizono, N. Nishio, and S. Nagai. 1993. Growth characteristics of Spirulina platens is in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng. 76: 408-410   DOI   ScienceOn
5 Piorreck, M., K. H. Baasch, and P. Pohl. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23: 207-216   DOI   ScienceOn
6 Yang, H. N., E. H. Lee, and H. M. Kim. 1997. Spirulina platensis inhibits anaphylactic reaction. Life Sci. 61: 1237-1244   DOI   ScienceOn
7 Joo, D. S., M. G. Cho, R. Buchholz, and E. H. Lee. 1998. Growth and fatty acid composition with growth conditions for Spirulina platensis. J. Korean Fish. Soc. 31: 409-416
8 Muhling, M., A. Belay, and B. A. Whitton. 2005. Screening Arthrospira (Spirulina) strains for heterotrophy. J. Appl. Phycol. 17: 129-135   DOI
9 Xu, N., X. Zhang, X. Fan, L. Han, and C. Zeng. 2001. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J. Appl. Phycol. 13: 463-469   DOI   ScienceOn
10 Borowitzka, M. A. 1994. Products from algae, pp. 5-15. In Phang, S. M., Y. K. Lee, M. A. Borowitzka, and B. A. Whitton (eds.), Algal Biotechnology in Asia-Pacific Region. University of Malaya, Kuala Lumpur, Malaysia
11 Bligh, E. Q and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917   DOI   PUBMED
12 Chen, F. and Y. Zhang. 1996. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224   DOI   ScienceOn
13 Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578   PUBMED
14 Sung, K. D.,J. H. Ann, J. Y. Lee, S. J. Ohh, and H. Y. Lee. 1995. Kinetics of cultivating photosynthetic microalga, Spirulina platensis in an outdoor photobioreactor. Korean J. Biotechnol. Bioeng. 10: 401-405
15 Tomaselli, L., E. Pelosi, and C. Paoletti. 1978. Composition of organic materials in Spirulina platensis and S. maxima. In Proceedings of the 18th Congress National Italian Society Microbiology, Fiuggi Terme, Italy
16 Kay, R. A. 1991. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30: 555-573   DOI   PUBMED   ScienceOn
17 Lepage, G. and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396   PUBMED
18 Henrikson, R. 1999. Earth Food Spirulina: How this remarkable blue-green algae can transform your health and our planet, 5th ed, on line (http://www.spirulinasource.com/index.html)
19 Ogawa, T. and S. Aiba. 1981. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioeng. 23: 1121-1132   DOI
20 Cohen, Z. 1997. The chemicals of Spirulina, pp. 205-212. In Vonshak, A. (ed.), Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. Taylor & Francis Ltd., London, UK
21 Kim, H. S., C.-H. Kim, J.-H. Kim, M.-C. Kwon, J.-H. Cho, H.-G. Gwak, B.-Y. Hwang, J.-C. Kim, and H.-G. Lee. 2006. Comparison of anticancer activities from the culture and extraction conditions of the Spirulina platensis. Kor. J. Microbiol. Biotech. 34: 143-149   과학기술학회마을
22 Ogawa, T. and G. Terui. 1970. Studies on the growth of Spirulina platensis: I. On the pure culture of Spirulina platensis. J. Ferment. Tecnol. 48: 361-367
23 Marquez, F. J., N. Nishio, S. Nagai, and K. Sasaki. 1995. Enhancement of biomass and pigment production during growth of Spirulina platens is in mixotrophic culture. J. Chem. Tech. Biotechnol. 62: 159-164   DOI   ScienceOn
24 Nandeesha, M. C., B. Gangadhara, J. K. Manissery, and L. V. Venkataraman. 2001. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. Bioresour. Technol. 80: 117-120   DOI   ScienceOn