Browse > Article

Increase of Bioactive Flavonoid Aglycone Extractable from Korean Citrus Peel by Carbohydrate-Hydrol-ysing Enzymes  

Ahn Soon-Cheol (Department of Microbiology and lmmunology, College of Medicine, Pusan National University, Medical Rerearch Institute, Pusan National University Hospital)
Kim Min-Soo (Korea Research Institute of Bioscience and Biotechnology)
Lee Sun-Hi (Department of Microbiology and lmmunology, College of Medicine, Pusan National University)
Kang Ju-Hyung (Department of Microbiology and lmmunology, College of Medicine, Pusan National University)
Kim Bo-Hye (Department of Microbiology and lmmunology, College of Medicine, Pusan National University)
Oh Won-Keun (Korea Research Institute of Bioscience and Biotechnology)
Kim Bo-Yeon (Korea Research Institute of Bioscience and Biotechnology)
Ahn Jong-Seog (Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.4, 2005 , pp. 288-294 More about this Journal
Abstract
Flavonoid compounds show several biological activities and generally exist in the forms of glycones linking sugar moiety to main structure. Flavonoid glycones such as naringin and hesperidin in korean citrus peel are slower absorbed and consequently less active than their aglycone, naringenin and hesperetin, respectively. Therefare to increase the content of flavonoid aglycone in korean citrus peel, we used commercial carbohydrate-hydrolysing enzymes, AMG 300 L, Pectinex 100 L, and Viscozyme for transforming flavonoid glycones to aglycones. Optimal conditions of enzyme reaction were pH 5.0-7.0, $5\%$ enzyme, and 24-48 hrs. The content of naringenin and hesperetin as flavonoid aglycones in untreated citrus peel is $100\~200\;ng/g$ of dried citrus peel. In case of enzyme-treated citrus peel the content of naringenin and hesperetin increased to $1,539\∼6,674\;ng/g\;and\;1,974\∼8,906\;ng/g$ of dried citrus peel, respectively. Finally the content of flavonoid aglycones could be extracted to 10-80 times. Now enzyme-treated citrus peel may be applied to use for functional food because of its higher flavonoid aglycones as more active compounds.
Keywords
Enzyme; naringenin; hesperetin; biotransformation; citrus peel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Chi, H. and G. E. Ji. 2005. Transformation of Ginsenosides Rb I and Re from Panax ginseng by Food Microorganisms. Biotechnol. Lett. 27: 765-771   DOI   ScienceOn
2 이상린, 박병화, 김항래, 김태현, 이성구, 정운계, 황재성. 2001. 이소플라본의 아글리콘의 제조 방법. 대한민국 특허 제 10-0302560-0000호
3 차재영, 조영수. 2001. 감귤류 플라보노이드의 생리기능 활성. 한국농화학회지 44: 122-128
4 문상욱, 강신혜, 진영준, 박지권, 이영돈, 이영기, 박덕배, 김세재. 2004. 감귤의 발효와 발효산물의 기능적 특성. 한국식품과학회지 36: 669-676
5 Frydoonfa, H. R., D. R. McGrath, and A. D. Spigelman. 2003. The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin. Colorectal Dis. 5: 149-152   DOI   ScienceOn
6 Day, A. J., M. S. DuPont, S. Ridley, M. Rhodes, M. J. Rhodes, M. R. Morgan, and G. Williamson. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 436: 71-75   DOI   PUBMED   ScienceOn
7 Kawaii, S., Y. Tomono, E. Katase, K. Ogawa, and M. Yano. 1999. Quantitatiort of flavonoid constituents in citrus fruits. J. Agric. Food Chem. 47: 3565-3571   DOI   ScienceOn
8 은종방, 정영민, 우건조. 1996. 감귤과육 및 과피의 식이섬유와 플라보노이드 검색 및 정량. 한국식품과학회지 28: 371-377
9 Francisco, R. T., P. A. Isabel, and L. M. Augustin. 2001. Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. J. Agric. Food Chem. 49: 5207-5209   DOI   ScienceOn
10 Yim, J. S., Y. S. Kim, S. K. Moon, K. H. Cho, H. S. Bae, J. J. Kim. E. K. Park. and D. H. Kim. 2004. Metabolic activities of ginsenoside RbI, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microtlora. Biol. Pharm. Bull. 27: 1580-1583   DOI   ScienceOn
11 Nemeth, K., G. W. Plumb, J. G. Berrin, N. Juge, R. Jacob, H. Y. Nairn, G. Williamson, D. M. Swallow, and P. A. Kroon. 2003. Deglycosylation by small intestinal epithelial cell betaglucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 42: 29-42   DOI   ScienceOn
12 Lee, D. S., Y. S. Kim, C. N. Ko, K. H. Cho, H. S. Bae, K. S. Lee, J. J. Kim, E. K. Park, and D. H. Kim. 2002. Fecal metabolic activities of herbal components to bioactive compounds. Arch. Pharm. Res. 25: 165-169   DOI   ScienceOn
13 Shen, J. L. and B. A. Bryan. 2003. Two-step conversion of vegetable protein isoflavone conjugates to aglycones. USA Patent No. 05827682
14 Oliveira, E. J. and Watson D. G. 2000. Liquid chromatography-mass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed. Chromatogr. 14: 351-372   DOI   ScienceOn
15 Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699
16 Kao Corp. 1992. Production of isoflavonoid. Japan Patent Application No. 1992190720
17 Puri, M. and U. C. Banerjee. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnol Adv. 18: 207-217   DOI   ScienceOn
18 Santamaria, R. I., M. D. Reyes-Duarte, E. Barzana, D. Fernando, F. M. Gama, M. Mota, and A. Lopez-Munguia. 2000. Selective enzyme-mediated extraction of capsaicinoids and caratenoids from chili guajillo puya (Capsicum annum L.) using ethanol as solvent. J. Agric. Food Chem. 48: 3063-3067   DOI   ScienceOn