Browse > Article

Characterization and Xylanse Productivity of Streptomyces sp. WL-2  

Lee Eun-Hee (School of Food Science & Biotechnology, Woosong University)
Kim Chang-Jin (KRIBB)
Yoon Ki-Hong (School of Food Science & Biotechnology, Woosong University)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.3, 2005 , pp. 178-183 More about this Journal
Abstract
A strain WL-2 was isolated from soil as a producer of the extracellular xylanase, which catalyzes the hydrolysis of oat spelt xylan. The strain WL-2 was identified as Streptomyces sp. on the basis of its 16S rRNA sequence, morphology, cultural and physiological properties. The xylanase of culture filtrate was the most active at $60^{\circ}C$ and pH 6.0, and retained $90{\%}$ of its maximum activity at range of pH $4.5{\~}6.5$. In order to optimize the culture medium for xylanase production, ingredients of G.S.S medium were replaced by several carbohydrates. The carbohydrates such as ${\alpha}-cellulose$, oat spelt xylan and maltose increased dramatically the xylanase productivity of Streptomyces sp. WL-2. The maximum xylanase productivity was reached to 120 U/ml in the modified medium containing $1{\%}\;\alpha-cellulose$ and $1\%}$ maltose.
Keywords
Streptomyces; identification; xylanase; productivity;
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
1 Bachmann, S. L. and A. J. McCarthy. 1991. Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl. Environ. Microbiol. 57: 2121-2130   PUBMED
2 Beg, Q. K., B. Bhushan, M. Kapoor, and G. S. Hoondal. 2000. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27: 459-466   DOI   ScienceOn
3 Lee, Y. E., E. Lowe, B. Henrissat, and J. G Zeikus. 1993. characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-R1. J. Bacteriol. 10: 563-567
4 Mansour, F. A., A. A. Shereif, M. M. Nourel-Dein, M. I. Abou-Dobara, and A. S. Ball. 2003. Purification and characterization of xylanase from a thermophilic Streptomyces sp. K37. Acta Microbiol. Pol. 52: 159-172
5 Shirling, E. B. and D. Gottlieb. 1966. Methods for the characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340   DOI
6 Tenkanen, H., J. Plus, and K. Poutanen. 1992. Two major xylanases of Trichoderma reesei. Enzyme Microb. Technol. 14: 566-574   DOI   ScienceOn
7 McCracken, K. J., M. R. Bedford, and R. A. Stewart. 2001. Effects of variety, the 1B/1R translocation and xylanase supplementation on nutritive value of wheat for broilers. Br. Poult. Sci. 42: 638-642   DOI   ScienceOn
8 Rodriquez, S., R. I. Santamaria, J. M. Fernandez-Abalos, and M. Diaz. 2005. Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene. 351: 1-9   DOI   PUBMED   ScienceOn
9 Siedenberg, D., S. R. Gerlach, K. Schugerl, M. L. F. Giuseppin, and J. Hunik. 1998. Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochem. 33: 429-433   DOI   ScienceOn
10 Miller, G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
11 Kansoh, A. L. and Z. A. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 85: 103-114   DOI   ScienceOn
12 Kim, D. J., H. J. Shin, and K. -H. Yoon. 1995. Isolation of a thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. Kor. J. Appl. Microbiol. Biotechnol. 28: 304-310
13 Williams, S. T., M. Goodfellow, G Alderson, E. M. H. Wellington, P. H. A. Sneath, and M. Sackin. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743-1813   PUBMED
14 de Lemos Esteves, F., V. Ruelle, J. Lamotte-Brasseur, B. Quinting, and J. -M. Frere. 2004. Acidophilic adaptation of family 11 endo-beta-1,4-xylanases: modeling and mutational analysis. Protein Sci. 13: 1209-1218   DOI   ScienceOn
15 Sunna, A. and G Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67   DOI   ScienceOn
16 Antonopoulos, V. T., M. Hernandez, M. E. Arias, E. Mavrakos, and A. S. Ball. 2001. The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Appl. Microbiol, Biotechnol. 57: 92-97   DOI   ScienceOn
17 Goodfellow, M., T. Cross, and H. A. Lechevalier. 1989. Suprageneric classification of Actinomyces, pp 2333-2450. In S.T. Williams, M.E. Sharpe, and J.G. Holt (eds.), Bergey's Mannual of Systematic Bacteriology, vol 4, Williams and Wilkins, Baltimore
18 Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290   DOI   ScienceOn
19 Kansoh, A. L., A. M-Ali, and A. A-El-Gammal. 2001. Xylanolytic activities of Streptomyces sp. 1--taxonomy, production, partial purification and utilization of agricultural wastes. Acta Microbiol. lmmunol. Hung. 48: 39-52   DOI   ScienceOn