Browse > Article

Culture Conditions and Antifungal Activity of Bacillus licheniformis KMU-3 against Crop Pathogenic Fungi  

Park Sung-Min (Department of Microbiology, Keimyung University)
Han Sun-Hee (Department of Ophthalmic Optics, Daegu Health College)
Yu Tae-Shick (Department of Microbiology, Keimyung University)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.2, 2005 , pp. 112-116 More about this Journal
Abstract
Bacillus licheniformis KMU-3 shown a strong antifungal activity was isolated from Swedish forest soils. B. licheniformis KMU-3 produced a maximum level of antifungal substance under incubation aerobically at $24^{\circ}C$ for 24 hours in LB broth containing $1.0\%$ sodium acetate, $1.0\%$ ammonium sulfate at 180 rpm and initial pH adjusted to 8.0. Chloroform extraction of culture broth was confirmed inhibitory zone by plate assay and Rf value 0.49 substance by thin layer chromatography (TLC) represented high antifungal activity against Rhizoctonia solani AG-1. This substance also exhibited against Rhizoctonia solani AG-4, Colletotrichum orbiculare, Colletotrichum gloeosporioides, Cladosporium cucumerinum, Fusarium oxysporum, and Fusarium graminearum.
Keywords
Bacillus licheniformis KMU-3; Rhizoctonia solani AG-1;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 Holt, J. G, N. R. Krirg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Systematic Bacteriology, 9th, Williams & Wilkins, U.S.A
2 Kleinkauf, H. and H. Dohren. 1983. Non-ribosomal peptide formation on multifunctional proteins. Trends Biochem. Sci. 8: 281-283   DOI   ScienceOn
3 Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growth promoting Pseudomonas fluorescens GL20 - mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 240-249
4 Priest, F. G 1989. Products from Bacilli, pp. 293-315. In Handbook of Biotechnology, Plenum Press, NY
5 Bella, L. A., R. M. Faust, R. Andreus, and G Steven. 1983. Molecular Biology of the Bacilli, pp. 186-210. Academic Press Inc., Orlando, Fla
6 Kim, S. H., H. J. Suh, and C. O. Kim. 1993. Taxonomy, purification and physicochemical properties of novel antifungal antibiotic AF-011A. Kor. J. Appl. Microbiol. Biotechnol. 6: 556-536
7 Demain, A. L. 1987. Production of nucleotides by microorganism, pp. 178-208. In Primary Products of Metabolism, vol. 2, Academic Press Inc., London
8 Arbige, M. V. and W. H. Pitcher. 1989. Industrial enzymology; a look towards the future. Trends Biotechnol. 7: 330-335   DOI   ScienceOn
9 Lim, H. S. and S. D. Kim. 1997. Role of siderophores in biocontrol of Fusarium solani and enhanced growth response of bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20
10 Shin, Y. J. 2000. Isolation, characteristics and structural analysis of the antifungal antibiotic from Bacillus sp. YJ-63. Ph. D. Thesis, Dongeui University
11 Zuber, P., Nakano, M. M. and M. A. Marahiel. 1993. Peptide Antibiotics, pp. 897-916. In Bacillus subtilis and other Gram-positive Bacteria, American Society for Microbiology Press
12 Kim., Y. S. and S. D. Kim. 1994. Antifungal mechanism and properties of antibiotic substances produced by Bacillus subtilis YB-70 as a biocontrol agent. J. Microbiol. Biotechnol. 4: 296-304
13 Kim, H. R. 1994. Antifungal antibiotics of antiagonistic bacterium Bacillus sp. YH -16 against Fusarium solani causing plant root rot. Ph. D. Thesis, Yeungnam University
14 Lee, J. M., S. H. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophore producing Pseudomonas fluorescens GL 7 and its biocontrol activity against root rot disease. Kor. J. Appl. Microbiol. Biotechnol. 27: 427-432