Browse > Article

Substrate Variety of a Non-metal Dependent Tagatose-6-phosphate Isomerase from Staphylococcus aureus  

Oh Deok-Kun (Department of Bioscience and Biotechnology, Sejong University)
Ji Eun-Soo (Major in Biotechnology, The Catholic University of Korea)
Kwon Young-Deok (Major in Biotechnology, The Catholic University of Korea)
Kim Hye-Jung (Department of Bioscience and Biotechnology, Sejong University)
Kim Pil (Major in Biotechnology, The Catholic University of Korea)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.2, 2005 , pp. 106-111 More about this Journal
Abstract
To investigate the substrate variety of a putative non-metal dependent isomerase, the tagatose-6-phosphate isomerase (E.C. 5.3.1.26) structural genes (lacB; 510bp and lacA; 430bp) of Staphylococcus aureus were subcloned and co-expressed. Based on the substrate configuration, various aldoses were surveyed for substrate of ketose isomerization. Among the 10 aldoses tested, D-ribose and D-allose were isomerized by the enzyme. The subunit A and B showed more than $95\%$ activity for D-ribose and $75\%$ for D-allose in the presence of 1mM EDTA compared with non-EDTA conditions, which implying tagatose-6-phosphate isomerase is a non-metal dependent isomerase. Each of subunit A or subunit B alone showed no activity for any of the substrates tested. The affinity constant ($K_m$) of tagatose-6-phosphate isomerase against D-ribose and D-allose were 26 mM and 142 mM, respectively.
Keywords
Tagatose-6-phosphate isomerase; Staphylococcus aureus; non-metal dependent isomerase; substrate variety;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Kim, P. 2004. Current studies on biological tagatose production using L-arabinose isomerase: a review and future perspective. Appl. Microbiol. Biotechnol. 65: 243-249   PUBMED
2 Rosey, E. L., B. Oskouian, and G. C. Stewart. 1991. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J. Bacteriol. 173: 5992-5998   PUBMED
3 Topper, Y. J. 1957. On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. Biol. Chem. 225: 419-425   PUBMED
4 van Rooijen, R. J., S. van Schalkwijk, and W. M. de Vos. 1991. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266: 7176-7181   PUBMED
5 Cheetham, P. S. J. and A. N. Wootton. 1993. Bioconversion of D-galactose into D-tagatose. Enzyme Microb. Technol 15: 105-108   DOI   ScienceOn
6 Garcia-Viloca, M., C. Alhambra, D. G Truhlar, and J. Gao. 2003. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects. J. Comput. Chem. 24: 177-190   DOI   ScienceOn
7 Yoon, S. H., P. Kim, and D. K. Oh, 2003. Properties of Larabinose isomerase from Escherichia coli as biocatalysis for tagatose production. World J. Microbiol. Biotechnol. 19: 47-51   DOI   ScienceOn
8 Asboth, B. and G Naray-Szabo. 2000. Mechanism of action of D-xylose isomerase. Curr. Protein Pept. Sci. 1: 237-254   DOI   ScienceOn
9 Bhosale, S. H., M. R. Rao, and V. V. Deshpande. 1996. Molecular and industrial aspects of glucose isomerase. Microbial. Rev. 60: 280-300
10 Dische, Z. and E. Borenfreund. 1951. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J. Biol. Chem. 192: 583-587   PUBMED
11 Lee, D. W., E. A. Choe, S. B. Kim, S. H. Eom, Y. H. Hong, S. J. Lee, H. S. Lee, D. Y. Lee, and Y. R. Pyun. 2005. Distinct metal dependence for catalytic and structural functions in the I-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Arch Biochem. Biophys. 434: 333-343   DOI   ScienceOn
12 Patrick, J. W. and N. Lee. 1968. Purification and properties of an L-arabinose isomerase from Escherichia coli. J Biol. Chem. 243: 4312-4318   PUBMED
13 Jagusztyn-Krynicka, E. K., J. B. Hansen, V. L. Crow, T. D. Thomas, A. L. Honeyman, and R. 3rd. Curtiss. 1992. Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster. J. Bacteriol. 174: 6152-6158   PUBMED
14 Read, J., J. Pearce, X. Li, H. Muirhead, J. Chirgwin, and C. Davies. 2001. The crystal structure of human phosphoglucose isomerase at 1.6 A resolution: implications for catalytic mechanism, cytokine activity and haemolytic anaemia J. Mol. Biol. 309: 447-463   DOI   ScienceOn
15 Kim, J. W., Y. W. Kim, H. J. Roh, H. Y. Kim, J. H. Cha, K. H. Park, and C. S. Park. 2003. Production of tagatose by a recombinant thermostable L-arabinose isomerase hom Thermus sp. IM6501. Biotechnol. Lett. 25: 963-967   DOI   ScienceOn
16 Blow, D. M., C. A. Collyer, J. D. Goldberg, and O. S. Smart. 1992. Structure and mechanism of D-xylose isomerase. Faraday Discuss. 92: 67-73
17 Graham Solomons, J. T., E. M. Zimmerly, S. Bums, N. Krishnamurthy, M. K. Swan, S. Krings, H. Muirhead, J. Chirgwin, and C. Davies. 2004. The crystal structure of mouse phosphoglucose isomerase at 1.6A resolution and its complex with glucose 6-phosphate reveals the catalytic mechanism of sugar ring opening. J. Mol. Biol. 342: 847-860   DOI   ScienceOn
18 Swan, M. K., J. T. Solomons, C. C. Beeson, T. Hansen, P. Schonheit, and C. Davies. 2003. Structural evidence for a hydride transfer mechanism of catalysis in phosphoglucose isomerase from Pyrococcus furiosus. J. Biol. Chem. 278: 47261-47268   DOI   ScienceOn
19 Roh, H. J., P. Kim, Y. C. Park, and J. H. Choi. 2000. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase. Biotechnol. Appl. Biochem. 31 (Pt 1): 1-4   DOI   ScienceOn
20 Hamilton, I. R. and H. Lebtag. 1979. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. J. Bacteriol. 140: 1102-1104   PUBMED