Browse > Article

Hydrolysis of Galactomannan and Manno-oligosaccharides by A Bacillus subtiis Mannanase  

Gwon, Min-A (School of Applied Food and Nutritional Science, Woosong University)
Yun, Gi-Hong (Bioresouce and Application Research Center, Woosong University)
Publication Information
Microbiology and Biotechnology Letters / v.32, no.4, 2004 , pp. 347-351 More about this Journal
Abstract
Hydrolysis of manno-oligosaccharides and galactomannan was studied with the purified Bacillus subtilis WL-7 mannanase from recombinant Eschericoli. The predominant products of hydrolysis were mannose, mannobiose and mannotriose. The enzyme could hydrolyze $\beta$-1 A-linked manno-oligosaccharides larger than mannobiose, but was not active on mannobiose. When the mannanase hydrolyzed manno-oligo saccharides of degree of polymerization(DP) 4-6, it was more active on the substrate of higher DP. Based on analysis of transient reaction products by TLC, the enzyme was found to have a preference for internal $\beta$-IA-mannosidic linkages, which are the central mannosidic bond of mannotetraose and the two middle mannosidic bonds of mannopentaose. The $\beta$-l A-mannosidic bonds situated at the second and fourth positions from the nonreducing end of mannohexaose were preferenhydrolyzed by the mannanase. Locust bean gum(LBG) was enzymatically hydrolyzed with higher efficiency than guar gum, resulting that amount of reducing sugars was liberated more efficiently from LBG than guar gum with same activity of mannanase.
Keywords
Bacillus subtilis; galactomannan; hydrolysis; mannanase; manno-oligosaccharides;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Bicho, P. A., T. A. Clark, K. Mackie, H. W. Morgan, and R. M. Daniel. 1991. The characterization of a thermostable endo-$\beta$-1,4- annanase cloned from “Caldocellum saccharolyticum”. Appl. Microbiol. Biotechnol. 36: 337-343
2 Halstead, J. R., P. E. Vercoe, H. J. Gilbert, K. Davidson, and G. P. Hazlewood. 1999. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiol. 145: 3101-3108
3 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426- 428   DOI
4 Oda, Y., T. Komaki, and K. Tonomura. 1993. Purification and properties of extracellular $\beta$-mannanases produced by Enterococcus casseliflavus FL2121 isolated from decayed konjac. J. Ferment. Bioeng. 76: 14-18
5 Tamaru, Y. and R. H. Doi. 2000. The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal ManA. J. Bacteriol. 182: 244-247
6 Yamaura, L., T. Matsumoto, M. Funatsu, and Y. Funatsu. 1990. Purification and some properties of endo-1,4-$\beta$-D-mannanase from Pseudomonas sp. PT-5. Agric. Biol. Chem. 54: 2425-2427
7 Kataoka, N. and Y. Tokiwa. 1998. Isolation and characterization of an active mannanase-producing anaerobic bacerium, Clostridium tertium KT-5A, from lotus soil. J. Appl. Microbiol. 84: 357-367
8 Takahashi, R., I. Kusakabe, H. Kobayashi, K. Murakami, A. Maekawa, and T. Suzuki. 1984. Purification and some properties of mannanase from Streptomyces sp. Agric. Biol. Chem. 48: 2189-2195
9 Kurokawa, J., E. Hemjinda, T. Arai, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Sequence of the Clostridium thermocellum mannanase gene man26B and characterization of the translated product. Biosci. Biotechnol. Biochem. 65: 548-554
10 Akino, T., N. Nakamura, and K. Horikoshi. 1988. Characterization of three $\beta$-mannanases of an alkalophilic Bacillus sp. Agric. Biol. Chem. 52: 773-779
11 Sachslehner, A., G. Foidl, N. Foidl, G. Gubitz, and D. Haltrich. 2000. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J. Biotechnol. 80: 127-134
12 Kweun, M. A., H. S. Kim, M. -S. Lee, J. H. Choi, and K. -H. Yoon. 2003. Mannanase production by a soybean isolate, Bacillus subtilis WL-7. Kor. J. Microbiol. Biotechnol. 31: 277-283
13 Hossain, M. Z., J. Abe, and S. Hizukuri. 1996. Multiple forms of $\beta$-mannanase from Bacillus sp. KK01. Enzyme Microb. Technol. 18: 95-98
14 Khanongnuch, C., K. Asada, H. Tsuruga, T. Ooi, S. Kinoshita, and S. Lumyong. 1998. $\beta$-Mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. J. Ferment. Bioeng. 86: 461-466
15 Sunna, A., M. D. Gibbs, C. W. J. Chin, P. J. Nelson, and P. L. Bergquist. 1999. A gene encoding a novel mutidomain $\beta$-1,4- mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl. Environ. Microbiol. 66: 664-670
16 Kweun, M. A., J. Y. Shon, and K.-H. Yoon. 2004. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32: 212-217
17 Kweun, M. A., M. -S. Lee, J. H. Choi, K. H. Cho, and K. -H. Yoon. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14: 1295-1302
18 Hogg, D., G. Pell, P. Dupree, F. Goubet, S. M. Martin-Orue, S. Armand, and H. J. Gilbert. 2003. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem. J. 371: 1027-1043