Browse > Article
http://dx.doi.org/10.7845/kjm.2019.9065

Complete genome sequencing of Pseudomonas parafulva PpaJBCS1880, a biocontrol and plant growth promoting agent  

Dutta, Swarnalee (Division of Biotechnology, Chonbuk National University)
Wabyona, Alex (Division of Biotechnology, Chonbuk National University)
Kakembo, David (Division of Biotechnology, Chonbuk National University)
Lee, Yong Hoon (Division of Biotechnology, Chonbuk National University)
Publication Information
Korean Journal of Microbiology / v.55, no.3, 2019 , pp. 286-288 More about this Journal
Abstract
Pseudomonas parafulva PpaJBCS1880 (PpaJBCS1880) isolated from rice seeds showed strong antagonistic activity against bacterial plant pathogens by producing lipopeptide. Furthermore, the strain controlled the incidence of bacterial pustule in soybean plants and promoted the growth of rice plants. Here we present complete genome sequence of PpaJBCS1880. The genome comprises of 5,208,480 bp with GC content of 63.4%, which includes 4,487 predicted protein-coding genes, 19 rRNAs, and 74 tRNAs. Genome analysis revealed genes encoding antimicrobial secondary metabolites such as lipopeptide, pyoverdine, phenazine, and hydrogen cyanide, which are known to play essential roles in biocontrol of plant diseases.
Keywords
antagonism; biocontrol; lipopeptide; PGPR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data. Nat. Methods 10, 563-569.   DOI
2 Couillerot O, Prigent‐Combaret C, Caballero‐Mellado J, and Moenne‐Loccoz Y. 2009. Pseudomonas fluorescens and closely‐related fluorescent pseudomonads as biocontrol agents of soil‐borne phytopathogens. Lett. Appl. Microbiol. 48, 505-512.   DOI
3 Kakembo D and Lee YH. 2019. Analysis of traits for biocontrol performance of Pseudomonas parafulva PpaJBCS1880 against bacterial pustule in soybean plants. Biol. Cont. 134, 72-81.   DOI
4 Liu Q, Zhang Y, Yu N, Bi Z, Zhu A, Zhan X, Wu W, Yu P, Chen D, Cheng S, et al. 2015. Genome sequence of Pseudomonas parafulva CRS01-1, an antagonistic bacterium isolated from rice field. J. Biotechnol. 206, 89-90.   DOI
5 Rosier A, Medeiros FHV, and Bais HP. 2018. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428, 35-55.   DOI
6 Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624.   DOI
7 Thakur D, Kaushal R, and Shyam V. 2014. Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-a review. Agricul. Rev. 35, 159-171.   DOI
8 Uchino M, Shida O, Uchimura T, and Komagata K. 2001. Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov. J. Gen. Appl. Microbiol. 47, 247-261.   DOI
9 Zhang Y, Chen P, Ye G, Lin H, Ren D, Guo L, Zhu B, and Wang Z. 2018. Complete genome sequence of Pseudomonas parafulva PRS09-11288, a biocontrol strain produces the antibiotic phenazine-1-carboxylic acid. Curr. Microbiol. 76, 1087-1091.   DOI