Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8063

Complete genome sequence of Pseudoalteromonas donghaensis HJ51T isolated from seawater  

Oh, Ji-Sung (Department of Microbiology, Chungbuk National University)
Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.54, no.3, 2018 , pp. 305-307 More about this Journal
Abstract
The whole genome sequencing using PacBio RS II platform was performed for a marine bacterium Pseudoalteromonas donghaensis $HJ51^T$ isolated from East Sea of Korea. As a result, three assembled contigs consisting of a chromosome (size of 3,646,857 bp, and G + C content of 41.8%) and two plasmids (size of 842,855 bp and 244,204 bp, and G + C content of 41.3% and 40.4%, respectively) were obtained. The genome included 4,083 protein coding genes and 127 RNA genes. This result could be used for gene sources of biopolymers degradation and the development as a new host with secretion system similar to Escherichia coli.
Keywords
Pseudoalteromonas donghaensis $HJ51^T$; complete genome sequence; seawater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bowman JP. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220-241.   DOI
2 de Pascale D, Giuliani M, De Santi C, Bergamasco N, Amoresano A, Carpentieri A, Parrilli E, and Tutino ML. 2010. PhAP protease from Pseudoalteromonas haloplanktis TAC125: gene cloning, recombinant production in E. coli and enzyme characterization. Polar Sci. 4, 285-294.   DOI
3 Gauthier G, Gauthier M, and Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45, 755-761.   DOI
4 He H, Chen X, Li J, Zhang Y, and Gao P. 2004. Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chem. 84, 307-311.   DOI
5 Holmstrom C and Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30, 285-293.   DOI
6 Jeong H, Kim HJ, and Lee SJ. 2015. Complete genome sequence of Escherichia coli strain BL21. Genome Announc. 3, e00134-15.
7 Oh YS, Park AR, Lee JK, Lim CS, Yoo JS, and Roh DH. 2011. Pseudoalteromonas donghaensis sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 351-355.
8 Kanehisa M, Sato Y, and Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726-731.   DOI
9 Lee SO, Kato J, Takiguchi N, Kuroda A, Ikeda T, Mitsutani A, and Ohtake H. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66, 4334-4339.   DOI
10 Oh JS, Choi YS, and Roh DH. 2015. Characterization and optimum production condition of extracellular protease from Pseudoalteromonas donghaensis HJ51. Korean J. Microbiol. 51, 75-80.   DOI
11 Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068-2069.   DOI
12 UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158-D169.   DOI
13 Yan BQ, Chen XL, Hou XY, He H, Zhou BC, and Zhang YZ. 2009. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles 13, 725-733.   DOI