Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8037

Complete genome sequence of multidrug-resistant Moraxella osloensis NP7 with multiple plasmids isolated from human skin  

Ganzorig, Munkhtsatsral (Department of Bio Health Science, Changwon National University)
Lim, Jae Yun (Department of Agricultural Biotechnology, Seoul National University)
Hwang, Ingyu (Department of Agricultural Biotechnology, Seoul National University)
Lee, Kyoung (Department of Bio Health Science, Changwon National University)
Publication Information
Korean Journal of Microbiology / v.54, no.3, 2018 , pp. 286-288 More about this Journal
Abstract
Moraxella osloensis NP7 was isolated from human skin of a collage male and showed resistance to ${\beta}-lactam$ and aminoglycoside antibiotics. Herein, we report the complete whole-genome sequence and gene annotations of M. osloensis NP7. It possesses single circular chromosome and seven plasmids. Chromosome is 2,389,582 bp in length with the G + C content of 43.9% and encodes 2,065 protein-coding genes. The combined seven plasmids are 654,202 bp in size with the average G + C content of 40.5% and code for a total of 667 protein-coding genes. The chromosome of NP7 strain contains four ribosomal RNA operon copies, one transfer-messenger RNA gene, forty-seven tRNA genes, three riboswitch genes and three CRISPR arrays. Additional CRISPR array is found in the plasmid pNP7-1. The genes conferring resistance to ${\beta}-lactam$ and aminoglycoside antibiotics were predicted to reside in the plasmid pNP7-1.
Keywords
Moraxella osloensis; multidrug resistance; multiple plasmids; skin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim JY, Hwang I, Ganzorig M, Huang SL, Cho GS, Franz C, and Lee K. 2018. Complete genome sequences of three Moraxella osloensis strains isolated from human skin. Genome Announc. 6, e01509-17.
2 Lim JY, Lee K, and Hwang I. 2014. Complete genome sequence of the mushroom-like aerial structure-forming Pseudomonas alkylphenolia, a platform bacterium for mass production of poly-${\beta}$-D-mannuronates. J. Biotechnol. 192, 20-21.   DOI
3 Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, and Struhl K. 1990. Current protocols in molecular biology. John Wiely and Sons, New York, NY, USA.
4 Besemer J, Lomsadze A, and Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607-2618.   DOI
5 Han XY and Tarrand JJ. 2004. Moraxella osloensis blood and catheter infections during anticancer chemotherapy: clinical and microbiologic studies of 10 cases. Am. J. Clin. Pathol. 121, 581-587.   DOI
6 Cardinale M, Kaiser D, Lueders T, Schnell S, and Egert M. 2017. Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Sci. Rep. 7, 5791.   DOI
7 Cosseau C, Romano-Bertrand S, Duplan H, Lucas O, Ingrassia I, Pigasse C, Roques C, and Jumas-Bilak E. 2016. Proteobacteria from the human skin microbiota: species-level diversity and hypotheses. One Health 2, 33-41.   DOI
8 Dien Bard J, Lewinski M, Summanen PH, and Deville JG. 2011. Sepsis with prolonged hypotension due to Moraxella osloensis in a non-immunocompromised child. J. Med. Microbiol. 60, 138-141.   DOI
9 Kubota H, Mitani A, Niwano Y, Takeuchi K, Tanaka A, Yamaguchi N, Kawamura Y, and Hitomi J. 2012. Moraxella species are primarily responsible for generating malodor in laundry. Appl. Environ. Microbiol. 78, 3317-3324.   DOI
10 Stanier RY, Palleroni NJ, and Doudoroff M. 1966. The aerobic pseudomonads: a taxomonic study. J. Gen. Microbiol. 43, 159-271.   DOI