Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6027

Biofilm modeling systems  

Kim, Soo-Kyoung (Department of Pharmacy, College of Pharmacy, Pusan National University)
Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University)
Publication Information
Korean Journal of Microbiology / v.52, no.2, 2016 , pp. 125-139 More about this Journal
Abstract
Biofilms are considered a complexly structured community of microorganisms derived from their attached growth to abiotic and biotic surfaces. In human life, they mediate serious infections and cause many problems in civil and industrial facilities. While it is of huge interest for scientists to understand biofilms, it has been very hard to directly analyze the various biofilms in nature. A variety of biofilm models have been suggested for laboratory-scale biofilm formation and many methods based on these models are widely used for the biofilm researches. These biofilm models mimic characteristics of environmental biofilms with different advantages and disadvantages. In this review, we will introduce these currently used biofilm model systems and explain their relative merits.
Keywords
batch culture; biofilm; biofilm model; Confocal Laser Scanning Microscope; continuous culture; flow cell; shear force;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bjarnsholt, T., Jensen, P.O., Fiandaca, M.J., Pedersen, J., Hansen, C.R., Andersen, C.B., Pressler, T., Givskov, M., and Hoiby, N. 2009. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547-558.   DOI
2 Boulos, L., Prevost, M., Barbeau, B., Coallier, J., and Desjardins, R. 1999. LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37, 77-86.   DOI
3 Buckingham-Meyer, K., Goeres, D.M., and Hamilton, M.A. 2007. Comparative evaluation of biofilm disinfectant efficacy tests. J. Microbiol. Methods 70, 236-244.   DOI
4 Buckingham-Meyer, K., Heersink, J., Pitts, B., Rayner, J., and Werner, E. 2003. Alternative biofilm growth reactors. In Hamilton, M., Heersink, J., Buckingham-Meyer, K., and Goeres, D. (eds.), The biofilm laboratory: Step-by-step protocols for experimental design, analysis, and data interpretation, pp. 31-51. Cytergy Publishing, Bozeman, USA.
5 Chalfie, M., Tu, Y., Euskirchen, G., and Ward, W.W. 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805.   DOI
6 Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., and Ghannoum, M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J. Bacteriol. 183, 5385-5394.   DOI
7 Cloete, T.E., Brozel, V.S., and Von Holy, A. 1992. Practical aspects of biofouling control in industrial water systems. Int. Biodeterior. Biodegrad. 29, 299-341.   DOI
8 Colvin, K.M., Gordon, V.D., Murakami, K., Borlee, B.R., Wozniak, D.J., Wong, G.C.L., and Parsek, M.R. 2011. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7, e1001264.   DOI
9 Conant, C.G., Schwartz, M.A., and Ionescu-Zanetti, C. 2010. Well plate-coupled microfluidic devices designed for facile image-based cell adhesion and transmigration assays. J. Biomol. Screen 15, 102-106.   DOI
10 De La Fuente, L., Montanes, E., Meng, Y., Li, Y., Burr, T.J., Hoch, H.C., and Wu, M. 2007. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl. Environ. Microbiol. 73, 2690-2696.   DOI
11 De Prijck, K., De Smet, N., Rymarczyk-Machal, M., Van Driessche, G., Devreese, B., Coenye, T., Schacht, E., and Nelis, H.J. 2010. Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane. Biofouling 26, 269-275.   DOI
12 De Prijck, K., Nelis, H., and Coenye, T. 2007. Efficacy of silver-releasing rubber for the prevention of Pseudomonas aeruginosa biofilm formation in water. Biofouling 23, 405-411.   DOI
13 Diaz, P.I., Chalmers, N.I., Rickard, A.H., Kong, C., Milburn, C.L., Palmer, R.J.Jr., and Kolenbrander, P.E. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72, 2837-2848.   DOI
14 Dietrich, L.E., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D.K. 2006. The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308-1321.   DOI
15 Donlan, R.M., Piede, J.A., Heyes, C.D., Sanii, L., Murga, R., Edmonds, P., El-Sayed, I., and El-Sayed, M.A. 2004. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl. Environ. Microbiol. 708, 4980-4988.
16 Dige, I., Nilsson, H., Kilian, M., and Nyvad, B. 2007. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci. 115, 459-467.   DOI
17 Dige, I., Raarup, M.K., Nyengaard, J.R., Kilian, M., and Nyvad, B. 2009. Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155, 2116-2126.   DOI
18 Donlan, R.M. and Costerton, J.W. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167-193.   DOI
19 Elkins, J.G., Hassett, D.J., Stewart, P.S., Schweizer, H.P., and McDermott, T.R. 1999. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl. Environ. Microbiol. 65, 4594-4600.
20 Eun, Y.J. and Weibel, D.B. 2009. Fabrication of microbial biofilm arrays by geometric control of cell adhesion. Langmuir 25, 4643-4654.   DOI
21 Freitas, A.I., Vasconcelos, C., Vilanova, M., and Cerca, N. 2013. Optimization of an automatic counting system for the quantification of Staphylococcus epidermidis cells in biofilms. J. Basic Microbiol. 54, 750-757.
22 Friedman, L. and Kolter, R. 2004a. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51, 675-690.
23 Friedman, L. and Kolter, R. 2004b. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186, 4457-4465.   DOI
24 Hadi, R., Vickery, K., Deva, A., and Charlton, T. 2010. Biofilmremoval bymedical device cleaners: comparison of two bioreactor detection assays. J. Hosp. Infect. 74, 160-167.   DOI
25 Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34-40.   DOI
26 Goeres, D.M., Hamilton, M.A., Beck, N.A., Buckingham-Meyer, K., Hilyard, J.D., Loetterle, L.R., Lorenz, L.A., Walker, D.K., and Stewart, P.S. 2009. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4, 783-788.   DOI
27 Goeres, D.M., Loetterle, L.R., Hamilton, M.A., Murga, R., Kirby, D.W., and Donlan, R.M. 2005. Statistical assessment of a laboratory method for growing biofilms. Microbiology 151, 757-762.   DOI
28 Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95-108.   DOI
29 Hannig, C., Hannig, M., Rehmer, O., Braun, G., Hellwig, E., and Al-Ahmad, A. 2007. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch. Oral Biol. 52, 1048-1056.   DOI
30 Hans-Curt, F. and Jost, W. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623-633.   DOI
31 Heersink, J. and Goeres, D. 2003. Reactor design considerations. In Hamilton, M., Heersink, J., Buckingham-Meyer, K., and Goeres, D. (eds.), The Biofilm Laboratory: Step-by-step Protocols for Experimental Design, Analysis, and Data Interpretation, pp. 13-15. Cytergy Publishing, Bozeman, USA.
32 Im, S.J. 2011. Differential regulation of genes in Pseudomonas aeruginosa biofilm depending on spatial structure. Master thesis, Pusan National University.
33 Heilmann, C., Gerke, C., Perdreau-Remington, F., and Gotz, F. 1996. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64, 277-282.
34 Heydorn, A., Ersboll, B.K., Hentzer, M., Parsek, M.R., Givskov, M., and Molin, S. 2000a. Experimental reproducibility in flowchamber biofilms. Microbiology 146, 2409-2415.   DOI
35 Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., and Molin, S. 2000b. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395-2407.   DOI
36 Janakiraman, V., Englert, D., Jayaraman, A., and Baskaran, H. 2009. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann. Biomed. Eng. 37, 1206-1216.   DOI
37 Jung, Y.G., Choi, J., Kim, S.K., Lee, J.H., and Kwon, S. 2015. Embedded biofilm, a ne biofilm model based on the embedded growth of bacteria. Appl. Environ. Microbiol. 81, 211-219.   DOI
38 Kim, J., Park, H.J., Lee, J.H., Hahn, J.S., Gu, M.B., and Yoon, J. 2009. Differential effect of chlorine on the oxidative stress generation in dormant and active cells within colony biofilm. Water Res. 43, 5252-5859.   DOI
39 Krom, B.P., Cohen, J.B., McElhaney Feser, G.E., and Cihlar, R.L. 2007. Optimized candida biofilm microtiter assay. J. Microbiol. Methods 68, 421-423.   DOI
40 Kwok, W.K., Picioreanu, C., Ong, S.L., van Loosdrecht, M.C.M., Ng, W.J., and Heijnen, J.J. 1998. Influence of biomass production and detachment force on biofilm structures in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 58, 400-407.   DOI
41 Lambertsen, L., Sternberg, C., and Molin, S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6, 726-732.   DOI
42 Lawrence, J.R., Neu, T.R., and Swerhone, G.D.W. 1998. Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J. Microbiol. Methods 32, 253-261.   DOI
43 Lazarova, V.Z., Capdeville, B., and Nikolov, L. 1992. Biofilm performance of a fluidized bed biofilm reactor for drinking water denitrification. Water Sci. Technol. 26, 555-666.
44 Lee, J.H., Kaplan, J.B., and Lee, W.Y. 2008. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed. Microdevices 10, 489-498.   DOI
45 Mittelman, M.W., Nivens, D.E., Low, C., and White, D.C. 1990. Differential adhesion, activity and carbohydrate: protein ratios of Pseudomonas atlantica monocultures attaching to stainless steel in a linear shear gradient. Microb. Ecol. 19, 269-278.   DOI
46 Moller, S., Korber, D.R., Wolfaardt, G.M., Molin, S., and Caldwell, D.E. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. Environ. Microbiol. 63, 2432-2438.
47 Niu, C. and Gilbert, E.S. 2004. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl. Environ. Microbiol. 70, 6951-6956.   DOI
48 O'Toole, G.A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 30, 2437.
49 O'Toole, G., Kaplan, H.B., and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79.   DOI
50 O'Toole, G.A. and Kolter, R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295-304.   DOI
51 Palmer, R.J.Jr. 2010. Supragingival and subgingival plaque: paradigm of biofilms. Compend. Contin. Educ. Dent. 31, 104-106.
52 Pamp, S.J., Sternberg, C., and Tolker-Nielsen, T. 2009. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75, 90-103.
53 Peeters, E., Nelis, H.J., and Coenye, T. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72, 157-165.   DOI
54 Pitts, B., Hamilton, M.A., Zelver, N., and Stewart, P.S. 2003. A microtiter-plate screening method for biofilm disinfection and removal. J. Microbiol. Methods 54, 269-276.   DOI
55 Quave, C.L., Plano, L.R.W., Pantuso, T., and Bennett, B.C. 2008. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 118, 418-428.   DOI
56 Rice, K.C., Mann, E.E., Enders, J.L., Weiss, E.C., Cassat, J.E., Smeltzer, M.S., and Bayles, K.W. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104, 8113-8118.   DOI
57 Richter, L., Stepper, C., Mak, A., Reinthaler, A., Heer, R., Kast, M., Bruckl, H., and Ertl, P. 2007. Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab Chip 7, 1723-1731.   DOI
58 Shen, Y., Stojicic, S., and Haapasalo, M. 2010. Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J. Endod. 36, 1820-1823.   DOI
59 Schaudinn, C., Carr, G., Gorur, A., Jaramillo, D., Costerton, J.W., and Webster, P. 2009. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM). J. Microsc. 235, 124-127.   DOI
60 Shapiro, J.A. 1984. The use of Mudlac transposons as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces. J. Gen. Microbiol. 130, 1169-1181.
61 Stepanovic, S., Djukic, V., Djordjevic, V., and Djukic, S. 2003. Influence of the incubation atmosphere on the production of biofilm by staphylococci. Clin. Microbiol. Infect. 9, 955-958.   DOI
62 Sternberg, C., Christensen, B.B., Johansen, T., Toftgaard Nielsen, A., Andersen, J.B., Givskov, M., and Molin, S. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108-4117.
63 Stewart, P.S. and Franklin, M.J. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199-210.   DOI
64 Stewart, P.S., Murga, R., Srinivasan, R., and de Beer, D. 1995. Biofilm structural heterogenecity visualized by three microscopic methods. Water Res. 8, 2006-2009.
65 Stewart, P.S., Rayner, J., Roe, F., and Rees, W.M. 2001. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91, 525-532.   DOI
66 Strathmann, M., Wingender, J., and Flemming, H.C. 2002. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Methods 50, 237-248.   DOI
67 Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., Caldwell, S.J., and Caldwell, D.E. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60, 434-446.
68 Van den Driessche, F., Rigole, P., Brackman, G., and Coenye, T. 2014. Optimization of resazurin-based viability staining for quantification of microbial biofilms. J. Microbiol. Methods 98, 31-34.   DOI
69 Van Loosdrecht, M.C.M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L., and Heijnen, J.J. 1995. Biofilm structures. Water Sci. Technol. 32, 35-43.
70 Vieira, M.J., Melo, L.F., and Phinheiro, M.M. 1993. Biofilm formation: hydrodynamic effects on internal diffusion and structure. Biofouling 7, 67-80.   DOI
71 Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P., Bellon, G., Berger, J., Weiss, T., et al. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317-325.   DOI
72 Wotton, R.S. and Preston, T.M. 2005. Surface films: areas of water bodies that are often overlooked. Bioscience 55, 137-145.   DOI
73 Yamamoto, K., Arai, H., Ishii, M., and Igarashi, Y. 2011. Trade-off between oxygen and iron acquisition in bacterial cells at the air-liquid interface. FEMS Microbiol. Ecol. 77, 83-94.   DOI
74 Yang, L., Haagensen, J.A.J., Jelsbak, L., Johansen, H.K., Sternberg, C., Hoiby, N., and Molin, S. 2008. In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J. Bacteriol. 190, 2767-2776.   DOI
75 Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., Molin, S., Givskov, M., and Tolker-Nielsen, T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59, 1114-1128.   DOI
76 Zelver, N., Hamilton, M., Pitts, B., Goeres, D., Walker, D., Sturman, P., and Heersink, J. 1999. Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol. 310, 608-628.   DOI
77 Aas, J.A., Paster, B.J., Stokes, L.N., Olsen, I., and Dewhirst, F.E. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721-5732.   DOI
78 Adetunji, V.O. and Odetokun, I.A. 2012. Assessment of biofilm in E. coli O157:H7 and Salmonella strains: Influence of cultural conditions. Am. J. Food Technol. 7, 582-595.   DOI
79 Al-Ahmad, A., Wunder, A., Auschill, T.M., Follo, M., Braun, G., Hellwig, E., and Arweiler, N.B. 2007. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by fivecolour multiplex fluorescence in situ hybridization. J. Med. Microbiol. 56, 681-687.   DOI
80 Ali, A., Khambaty, F., and Diachenko, G. 2006. Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents. Bioresour. Technol. 97, 1887-1893.   DOI
81 Amorena, B., Gracia, E., Monzon, M., Leiva, J., Oteiza, C., Perez, M., Alabart, J.L., and Hernandez-Yago, J. 1999. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 44, 43-55.   DOI
82 Anderl, J.N., Franklin, M.J., and Stewart, P.S. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818-1824.   DOI
83 Anderson, G.G., Palermo, J.J., Schilling, J.D., Roth, R., Heuser, J., and Hultgren, S.J. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105-107.   DOI
84 Benoit, M.R., Conant, C.G., Ionescu-Zanetti, C., Schwarz, M., and Matin, A. 2010. New device for high-throughput viability screening of flow biofilms. Appl. Environ. Microbiol. 76, 4136-4142.   DOI