Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5040

Phylogenetic diversity of marine bacteria dependent on the port environment around the Ulleng Island  

Khang, Yongho (School of Biotechnology, Yeungnam University)
Ahn, Minkyung (School of Biotechnology, Yeungnam University)
Publication Information
Korean Journal of Microbiology / v.51, no.3, 2015 , pp. 312-317 More about this Journal
Abstract
Pyrosequencing of 16S rDNA tags was used to obtain the bacterial diversity and community structure in the uncultured seawaters as well as in the cultured seawaters, which were collected from the 7 ports (Cheonbu, Hyunpo, Taeha, Namyang, Sadong, Dodong, and Jeodong) and 1 seashore (Guam) around the Ulleng island, Korea. Alphaproteobacteria were the most abundant group in the clean seawaters such as seawaters of Taeha and Sadong ports. Gammaproteobacteria proportion increased depending upon the wastewater amounts mixed with the seawaters such as seawaters of Namyang, Dodong, and Jeodong ports. The genuses of Alteromonas (from samples of Cheonbu, Taeha, Guam, Namyang, Sadong), Shewanella (from sample of Jeodong), and Vibrio (from samples of Hyunpo and Dodong) were dominant group in each of the cultured seawaters incubated in marine broth (Difoco). The results suggest that the incoming wastewaters to the port seawaters contribute to the dynamic change of the marine bacterial community around the Ulleng island.
Keywords
bacterial community; port seawaters; pyrosequencing; Ulleng island; wastewater;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Araujo, S., Henriques, I.S., Leandro, S.M., Alves, A., Pereira, A., and Correia, A. 2014. Gulls identified as major source of fecal pollution in coastal waters: a microbial source tracking study. Sci. Total Environ. 470-471, 84-91.   DOI
2 Arthur, C., Sutton-Grier, A.E., Murphy, P., and Bamford, H. 2014. Out of sight but not out of mind: harmful effects of derelict traps in selected U.S. coastal waters. Mar. Pollut. Bull. 86, 19-28.   DOI
3 Bengtsson-Palme, J., Rosenblad, M.A., Molin, M., and Blomberg, A. 2014. Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics 15, 749.   DOI
4 Chae, J.S., Choi, M.S., Song, Y.H., Um, I.K., and Kim, J.G. 2014. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Mar. Pollut. Bull. 88, 373-382.   DOI
5 Chandia, C. and Salamanca, M. 2012. Long-term monitoring of heavy metals in Chilean coastal sediments in the eastern South Pacific Ocean. Mar. Pollut. Bull. 64, 2254-2260.   DOI
6 Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., et al. 2014. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 111, 10239-10244.   DOI
7 Du, J., Xiao, K., Li, L., Ding, X., Liu, H., Lu, Y., and Zhou, S. 2013. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea. PLoS One 8, e66968.   DOI
8 Edlund, A. and Jansson, J.K. 2006. Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments. Appl. Environ. Microbiol. 72, 6800-6807.   DOI
9 Gueguen, M., Amiard, J.C., Arnich, N., Badot, P.M., Claisse, D., Guerin, T., and Vernoux, J.P. 2011. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Rev. Environ. Contam. Toxicol. 213, 55-111.
10 Han, D., Kang, I., Ha, H.K., Kim, H.C., Kim, O.S., Lee, B.Y., Cho, J.C., Hur, H.G., and Lee, Y.K. 2014. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting. PLoS One 9, e86887.   DOI
11 Klaus, J.S., Janse, I., Heikoop, J.M., Sanford, R.A., and Fouke, B.W. 2007. Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. Environ. Microbiol. 9, 1291-1305.   DOI
12 Jing, H., Xia, X., Suzuki, K., and Liu, H. 2013. Vertical profiles of bacteria in the tropical and subarctic oceans revealed by pyrosequencing. PLoS One 8, e79423.   DOI
13 Joint, I., Muhling, M., and Querellou, J. 2010. Culturing marine bacteria - an essential prerequisite for biodiscovery. Microb. Biotechnol. 3, 564-575.   DOI
14 Khang, Y. 2014. Comparison of bacterial communities in beach sands along the east coast of North Gyeongsang province. Kor. J. Microbiol. 50, 376-380.   DOI
15 Lambert, M.S., Ozbay, G., and Richards, G.P. 2009. Seawater and shellfish (Geukensia demissa) quality along the Western Coast of Assateague Island National Seashore, Maryland: an area impacted by feral horses and agricultural runoff. Arch. Environ. Contam. Toxicol. 57, 405-415.   DOI
16 Liu, Z. and Liu, J. 2013. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiologyopen 2, 492-504.   DOI
17 Marietou, A. and Bartlett, D.H. 2014. Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl. Environ. Microbiol. 80, 5992-6003.   DOI
18 McQuaig, S., Griffith, J., and Harwood, V.J. 2012. Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Appl. Environ. Microbiol. 78, 6423-6432.   DOI
19 Montevecchi, W., Fifield, D., Burke, C., Garthe, S., Hedd, A., Rail, J.F., and Robertson, G. 2012. Tracking long-distance migration to assess marine pollution impact. Biol. Lett. 8, 218-221.   DOI
20 Mika, K.B., Imamura, G., Chang, C., Conway, V., Fernandez, G., Griffith, J.F., Santoro, A.E., and Boehm, A.B. 2007. Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides, and traditional indicators. Environ. Microbiol. 9, 2038-2049.   DOI
21 Sakellari, A., Karavoltsos, S., Theodorou, D., Dassenakis, M., and Scoullos, M. 2013. Bioaccumulation of metals (Cd, Cu, Zn) by the marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal microenvironments: association with metal bioavailability. Environ. Monit. Assess. 185, 3383-3395.   DOI
22 Scott, T.M., Rose, J.B., Jenkins, T.M., Farrah, S.R, and Lukasik, J. 2002. Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68, 5796-5803.   DOI
23 Signori, C.N., Thomas, F., Enrich-Prast, A., Pollery, R.C., and Sievert, S.M. 2014. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front. Microbiol. 5, 647.
24 Sinaei, M. and Mashinchian, A. 2014. Polycyclic aromatic hydrocarbons in the coastal sea water, the surface sediment and Mudskipper Boleophthalmus dussumieri from coastal areas of the Persian Gulf: source investigation, composition pattern and spatial distribution. J. Environ. Health Sci. Eng. 12, 59.   DOI
25 Sjostedt, J., Martiny, J.B., Munk, P., and Riemann, L. 2014. Abundance of broad bacterial taxa in the sargasso sea explained by environmental conditions but not water mass. Appl. Environ. Microbiol. 80, 2786-2795.   DOI
26 Van Cauwenberghe, L., Vanreusel, A., Mees, J., and Janssen, C.R. 2013. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495-499.   DOI
27 Suarez-Ulloa, V., Fernandez-Tajes, J., Manfrin, C., Gerdol, M., Venier, P., and Eirin-Lopez, J.M. 2013. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar. Drugs 11, 4370-4389.   DOI
28 Suh, S.S., Park, M., Hwang, J., Kil, E.J., Jung, S.W., Lee, S., and Lee, T.K. 2015. Seasonal dynamics of marine microbial community in the south sea of Korea. PLoS One 10, e0131633.   DOI
29 Tseng, C.H., Chiang, P.W., Lai, H.C., Shiah, F.K., Hsu, T.C., Chen, Y.L., Wen, L.S., Tseng, C.M., Shieh, W.Y., Saeed, I., et al. 2015. Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea. BMC Genomics 16, 219.   DOI
30 Vetriani, C., Voordeckers, J.W., Crespo-Medina, M., O'Brien, C.E., Giovannelli, D., and Lutz, R.A. 2014. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J. 8, 1510-1521.   DOI
31 Von Glasow, R., Jickells, T.D., Baklanov, A., Carmichael, G.R., Church, T.M., Gallardo, L., Hughes, C., Kanakidou, M., Liss, P.S., Mee, L., et al. 2013. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems. Ambio. 42, 13-28.   DOI
32 Wang, Z.H., Yang, J.Q., Zhang, D.J., Zhou, J., Zhang, C.D., Su, X.R., and Li, T.W. 2014. Composition and structure of microbial communities associated with different domestic sewage outfalls. Genet. Mol. Res. 13, 7542-7552.   DOI
33 Zhang, Z.W., Xu, X.R., Sun, Y.X., Yu, S., Chen, Y.S., and Peng, J.X. 2014. Heavy metal and organic contaminants in mangrove ecosystems of China: a review. Environ. Sci. Pollut. Res. Int. 21, 11938-11950.   DOI