Browse > Article
http://dx.doi.org/10.7845/kjm.2013.3065

Microbial Diversity of the Trichloroethylene Contaminated Groundwater Treatment System and Characterization of Pseudomonas sp. DHC8  

Nam, Ji-Hyun (Department of Biology, Kyungsung University)
Shin, Ji-Hye (Department of Microbiology, Chungbuk National University)
Kwon, Kiwook (Department of Civil and Environmental System Engineering, Hanyang University)
Bae, Wookeun (Department of Civil and Environmental System Engineering, Hanyang University)
Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.49, no.4, 2013 , pp. 336-342 More about this Journal
Abstract
Trichloroethylene (TCE) is a widely used substance in commercial and industrial applications, yet it must be removed from the contaminated soil and groundwater environment due to its toxic and carcinogenic nature. We investigated bacterial community structure, dominant bacterial strain, and removal efficiency in a TCE contaminated groundwater treatment system using immobilized carrier. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library. The major bacterial population of the contaminated groundwater treatment system was belonging to BTEX degradation bacteria. The bacterial community consisted mainly of one genus of Pseudomonas (Pseudomonas putida group). The domination of Pseudomonas putida group may be caused by high concentration of toluene and TCE. Furthermore, we isolated a toluene and TCE degrading bacterium, named Pseudomonas sp. DHC8, from the immobilized carrier in bioreactor which was designed to remove TCE from the contaminated ground water. Based on the results of morphological and physiological characteristics, and 16S rRNA gene sequence analysis, strain DHC8 was identified as a member of Pseudomonas putida group. When TCE (0.83 mg/L) and toluene (60.61 mg/L) were degraded by this strain, removal efficiencies were 72.3% and 100% for 12.5 h, respectively. Toluene removal rate was 2.89 ${\mu}mol/g$-DCW/h and TCE removal rate was 0.02 ${\mu}mol/g$-DCW/h. These findings will be helpful for maintaining maximum TCE removal efficiency of a reactor for bioremediation of TCE.
Keywords
Pseudomonas sp. DHC8; immobilized bacterial carrier; microbial diversity; TCE contaminated groundwater;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arp, D.J., Yeager, C.M., and Hyman, M.R. 2001. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12, 81-103.   DOI   ScienceOn
2 Bordel, S., Diaz, L.F., Munoz, R., and Villaverde, S. 2007. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl. Microbiol. Biotechnol. 74, 857-866.   DOI   ScienceOn
3 Chambon, J.C., Bjerg, P.L., Scheutz, C., Baelum, J., Jakobsen, R., and Binning, P.J. 2013. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol. Bioeng. 110, 1-23.   DOI   ScienceOn
4 Chen, Y., Lin, T., Huang, C., Lin, J., and Hsieh, F. 2007. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazard. Mater. 148, 660-670.   DOI   ScienceOn
5 Choi, M.H., Kim, J., and Lee, S.S. 2008. The characteristics of tetrachloroethylene (PCE) degradation by Pseudomonas putida BJ10. Kor. J. Microbiol. 44, 311-316.   과학기술학회마을
6 Chun, J., Huq, A., and Colwell, R.R. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208.
7 Elango, V., Kurtz, H.D., and Freedman, D.L. 2011. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. Chemosphere 84, 247-253.   DOI   ScienceOn
8 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.   DOI   ScienceOn
9 Gennaro, V., Ceppi, M., Crosignani, P., and Montanaro, F. 2008. Reanalysis of updated mortality among vinyl and polyvinyl chloride workers: confirmation of historical evidence and new findings. BMC Public Health 8, 21.   DOI   ScienceOn
10 Heald, S. and Jenkins, R.O. 1994. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60, 4634-4637.
11 Jahng, D. and Wood, T.K. 1994. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60, 2473-2482.
12 Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21-132. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.
13 Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. 2006. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int. J. Syst. Evol. Microbiol. 56, 2819-2823.   DOI   ScienceOn
14 Kim, S., Bae, W., Hwang, J., and Park, J. 2010. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci. Technol. 62, 1991-1997.   DOI   ScienceOn
15 Kalyuzhnaya, M.G., Beck, D.A.C., Vorobev, N., Smalley, D.D., Lidstrom, M.E., and Chistoserdova, L. 2012. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int. J. Syst. Evol. Microbiol. 62, 106-111.   DOI   ScienceOn
16 Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A., and Mangelsdorf, I. 2000.Vinyl chloride: still a cause for concern. Environ. Health Perspect. 108, 579-588.   DOI
17 Kim, Y., Arp, D.J., and Semprini, L. 2002. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnol. Bioeng. 80, 498-508.   DOI   ScienceOn
18 Kim, Y., Kim, J., Ha, C., Kim, N., Hong, K., Kwon, S.Y., Ahn, Y.H., Ha, J., and Park, H. 2005. Field tests for assessing the bioremediation feasibility of a trichloroethylene-contaminated aquifer. J. KoSSGE. 10, 38-45.   과학기술학회마을
19 Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, England.
20 Lee, S., Lee, J., and Jahng, D. 1998. Degradation of BTEX and trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4. Kor. J. Biotechnol. Bioeng. 13, 561-568.   과학기술학회마을
21 Liu, J., Amemiya, T., Chang, Q., Qian, Y., and Itoh, K. 2012. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures. Biodegradation 23, 683-691.   DOI   ScienceOn
22 Powell, C.L., Nogaro, G., and Agrawal, A. 2011. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots. Biodegradation 22, 527-538.   DOI
23 McCarty, P.L. 1997. Microbiology-breathing with chlorinated solvents. Science 276, 1521-1522.   DOI   ScienceOn
24 Morono, Y., Unno, H., Tanji, Y., and Hori, K. 2004. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl. Environ. Microbiol. 70, 2830-2835.   DOI   ScienceOn
25 Mulet, M., Garcia-Valdes, E., and Lalucat, J. 2013. Phylogenetic affiliation of Pseudomonas putida biovar A and B strains. Res. Microbiol. 164, 351-359.   DOI   ScienceOn
26 Rittmann, B.E. and McCarty, P.L. 2001. Environmental Biotechnology: Principles and Applications, McGraw-Hill.
27 Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 79, 59-65.
28 Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
29 Squillace, P.J., Moran, M.J., Lapham, W.W., Price, C.V., Clawges, R.M., and Zogorski, J.S. 1999. Volatile organic compounds in untreated ambient groundwater of the United States, 1985-1995. Environ. Sci. Technol. 33, 4176-4187.   DOI   ScienceOn
30 Uchiyama, H., Yagi, O., Oguri, K., and Kokufuta, E. 1994. Immobilization of trichloroethylene-degrading bacterium, Methylocystis sp. strain M in different matrices. J. Ferment. Bioeng. 77, 173-177.   DOI   ScienceOn
31 Yeager, C.M., Bottomley, P.J., and Arp, D.J. 2001. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl. Environ. Microbiol. 67, 2107-2115.   DOI   ScienceOn
32 Wackett, L.P. and Gibson, D.T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54, 1703-1708.
33 World Health Organization. 1984. Guidelines for drinking water quality WHO. Geneva.
34 Yeager, C.M., Arthur, K.M., Bottomley, P.J., and Arp, D.J. 2004. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation 15, 19-28.   DOI   ScienceOn
35 Zylstra, G.J. and Gibson, D.T. 1989. Toluene degradation by Pseudomonas putida F1. J. Biological. Chem. 264, 1940-1946.