Browse > Article

Implications of Growth Arrest Induced by Overproduction of RraB in Escherichia coli  

Ryou, Sang-Mi (Department of Life Science, Chung-Ang University)
Yeom, Ji-Hyun (Department of Life Science, Chung-Ang University)
Go, Ha-Young (Department of Life Science, Chung-Ang University)
Shin, Eun-Kyoung (Department of Life Science, Chung-Ang University)
Lee, Kang-Seok (Department of Life Science, Chung-Ang University)
Publication Information
Korean Journal of Microbiology / v.46, no.2, 2010 , pp. 223-227 More about this Journal
Abstract
RNase E plays a major role in the degradation and processing of a large number of RNA transcripts in Escherichia coli and forms the core component of the degradosome, a large protein complex involved in RNA metabolism. RraA and RraB are recently discovered protein inhibitors of RNase E and are evolutionarily conserved. In this study, we observed that, unlike RraA, overexpression of RraB did not rescue growth arrest of E. coli cells overexpressing RNase E. To examine whether this phenomenon stems from differential inhibitory effects of RraA and RraB on RNase E substrates, we analyzed three in vivo RNase E substrates. The results showed that RraA inhibited RNase E activity more efficiently than RraB on the degradation of RNA I, which controls the copy number of ColE1-type plasmid, and rpsO mRNA encoding ribosomal protein S15, while RraB was unable to inhibit the processing of pM1 RNA, a precursor of the RNA component of RNase P, by RNase E. Our results imply that RraB inhibits RNase E activity in a more substrate-dependent manner than RraA and this property of RraB may explain why overexpression of RraB could not rescue cells overexpressing RNase E from growth arrest.
Keywords
degradosome; RNA stability; RNase E; RraA; RraB;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Gao, J., K. Lee, M. Zhao, J. Qiu, X. Zhan, A. Saxena, C.J. Moore, S.N. Cohen, and G. Georgiou. 2006. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61, 394-406.   DOI   ScienceOn
2 Carpousis, A.J. 2007. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61, 71-87.   DOI   ScienceOn
3 Claverie-martin, F., M.R. Diaz-torres, S.D. Yancey, and S.R. Kushner. 1991. Analysis of the altered mRNA stability (ams) gene from Escherichia coli. J. Biol. Chem. 266, 2843-2851.
4 Yeom, J.H., H. Go, E. Shin, H.L. Kim, S.H. Han, C.J. Moore, J. Bae, and K. Lee. 2008. Inhibitory effects of RraA and RraB on RNase E-related enzymes imply conserved functions in the regulated enzymatic cleavage of RNA. FEMS Microbiol. Lett. 285, 10-15.   DOI   ScienceOn
5 Yeom, J.H. and K. Lee. 2006. RraA rescues Escherichia coli cells overproducing RNase E from growth arrest by modulating the ribonucleolytic activity. Biochem. Biophys. Res. Commun. 345, 1372-1376.   DOI   ScienceOn
6 Steege, D.A. 2000. Emerging features of mRNA decay in bacteria. RNA 6, 1079-1090.   DOI   ScienceOn
7 Yeom, J.H., E. Shin, H. Go, S.H. Sim, and K. Lee. 2008. Functional implications of the conserved action of regulators of ribonuclease activity. J. Microbiol. Biotechnol. 18, 1353-1356.   과학기술학회마을
8 McDowall, K.J. and S.N. Cohen. 1996. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J. Mol. Biol. 255, 349-355.   DOI   ScienceOn
9 Mudd, E.A. and C.F. Higgins. 1993. Escherichia coli endoribonuclease RNase E: Autoregulation of expression and sitespecific cleavage of mRNA. Mol. Microbiol. 9, 557-568.   DOI   ScienceOn
10 Reed, R.E., M.F. Baer, C. Guerrier-Takada, H. Donis-Keller, and S. Altman. 1982. Nucleotide sequence of the gene encoding the RNA subunit (M1 RNA) of ribonuclease P from Escherichia coli. Cell 30, 627-636.   DOI   ScienceOn
11 Taraseviciene, L., G.G. Bjork, and B.E. Uhlin. 1995. Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J. Biol. Chem. 270, 26391-26398.   DOI
12 Hajnsdorf, E., F. Braun, J. Haugel-Nielsen, J. Le Derout, and P. Regnier. 1996. Multiple degradation pathways of the rpsO mRNA of Escherichia coli RNase E interacts with the 5′ and 3′ extremities of the primary transcript. Biochimie 78, 416-424.   DOI   ScienceOn
13 Jain, C. and J.G. Belasco. 1995. Autoregulation of RNase E synthesis in Escherichia coli. Nucleic Acids Symp. Ser. 33, 85-88.
14 Jiang, X. and J.G. Belasco. 2004. Catalytic activation of multimeric RNase E and RNase G by 5′ monophophorylated RNA. Proc. Natl. Acad. Sci. USA 101, 9211-9216.   DOI   ScienceOn
15 Lin-Chao, S., T.T. Wong, K.J. McDowall, and S.N. Cohen. 1994. Effects of nucleotide sequence on the specificity of rne-dependent and RNase E-mediated cleavages of RNA I encoded by the pBR322 plasmid. J. Biol. Chem. 269, 10797-10803.
16 Lee, K., J.A. Bernstein, and S.N. Cohen. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43, 1445-1456.   DOI   ScienceOn
17 Lee, K., X. Zhan, J. Gao, J. Qiu, Y. Feng, R. Meganathan, S.N. Cohen, and G. Georgiou. 2003. RraA: A protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 114, 623-634.   DOI   ScienceOn
18 Jain, C., A. Deana, and J.G. Belasco. 2002. Consequences of RNase E scarcity in Escherichia coli. Mol. Microbiol. 43, 1053-1064.   DOI   ScienceOn