Browse > Article

Isolation and Characterization of Keratinolytic Protein Chicken Feather-Degrading Bacteria  

Kim, Se-Jong (Department of Microbial & Nano Materials, Mokwon University)
Cho, Chun-Hwi (KAFCO Biochemistry Research Institute)
Whang, Kyung-Sook (Department of Microbial & Nano Materials, Mokwon University)
Publication Information
Korean Journal of Microbiology / v.46, no.1, 2010 , pp. 86-92 More about this Journal
Abstract
Thirty-one chicken feather-degrading bacteria were isolated from wasted feather, compost and wastewater in a chicken farm. These isolates were categorized as Firmicutes (21 strains), ${\gamma}$-proteobacteria (4 strains), Actinobacteria (4 strains), and Bacteroidetes (2 strains) by 16S rRNA gene sequence analysis. We examined the feather-degrading isolates for degradation in the 2% of chicken feather meal. The strain Chryseobacterium sp. FBF-7, Stenotrophomonas maltophilia FBS-4, and Lysinibacillus sp. FBW-3 were selected as a keratinolytic protein degrading bacteria which showed the highest feather degradation of 75-90%. The characteristics of amino acids extracted from chicken feather meal by using keratinolytic protein degrading isolates and chemical method with $Ca(OH)_2$ were analyzed. Total amino acid content of strain Chryseobacterium sp. FBF-7 was 1,661.6 ${\mu}mol$/ml, which was the highest and it was similar with chemical method. And essential amino acid content of total amino acid was thirty-seven percent (619.3 ${\mu}mol$/ml) and 596.9 ${\mu}mol$/ml for keratinolytic protein degrading isolates and chemical method, respectively. The major amino acids were valine, glutamic acid, aspartic acid, glycine, and proline by the strain Chryseobacterium sp. FBF-7 and especially, higher contents of aspartic acid, threonine, serine, cysteine, and tyrosine were detected compared with chemical method.
Keywords
amino acids; chicken feather; keratinolytic protein degrading bacteria;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Herzog. P., I. Winkler, D. Wolking, P. Kampfer, and A. Lipski. 2008. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int. J. Syst. Evol. Microbiol. 58, 26-33.   DOI   ScienceOn
2 Wang, J.J. and J.C.H. Shih. 1999. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J. Ind. Microbiol. Biotechnol. 22, 608-616.   DOI   ScienceOn
3 Woo. E.O., M.J. Kim, H.S. Son, E.Y. Ryu, S.Y. Jeong, H.J. Son, S.J. Lee, and G.T. Park. 2007. Production of keratinolytic protease by Bacillus pumilus RS7 and feather hydrolysate as a source of amino acids. J. Environ. Sci. 16, 1203-1208.   과학기술학회마을   DOI
4 Santos, R.M.D.B., A.A.P. Firmino, C.M de Sa, and C.R Felix. 1996. Keratinolytic activity of Aspergillus fumigatus. Curr. Microbiol. 33, 364-370.   DOI   ScienceOn
5 Riffel, A., A. Brandelli, C.M. Bellato, G.H.M.F. Souza, M.N. Eberlin, and F.C.A. Tavares. 2007. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J. Biotechnol. 128, 693-703.   DOI   ScienceOn
6 Son, H.J., G.T. Park, and Y.G. Kim. 2004. Production of a keratinolytic protease by a feather-degrading bacterium, Bacillus megaterium F7-1. Kor. J. Microbiol. 40, 43-48.   과학기술학회마을
7 Taha, I.Z. 1998. Cloned Bacillus subtilis alkaline protease(apr A) gene showing high level of keratinolytic activity. Appl. Biochem. Biotechnol. 70/72, 199-205   DOI   ScienceOn
8 Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673- 4680.   DOI   ScienceOn
9 Onifade, A.A., N.A. Al-Sane, A.A. Al-Musallam, and A. Al- Zarban. 1998. A review: Potentials for biotechnological applications of keratin-de-grading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores. Technol. 66, 1-11.   DOI   ScienceOn
10 Riffel, A. and A. Brandelli. 2000. Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J. Ind. Microbiol. Biotechnol. 29, 255-258.
11 Saitou, N. and M. Nei. 1987. The neighbor-joinning method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 406-426.
12 Sangali, S. and A. Brandelli. 2000. Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 89, 735-743.   DOI   ScienceOn
13 Papadopoulose, M.C. 1985. Processed chicken feathers as feedstuff for poultry and swine. A review. Agric. Wastes 14, 275-290.   DOI
14 Moore, E.R.B., A.S. Kruger, L. Hauben, S.E. Seal, R. De Baere, R. De Wachter, K.N. Timmis, and J. Swings. 1997. 16S rRNA gene sequence analysis and inter- and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiol. Lett. 151, 145-153.   DOI   ScienceOn
15 Mukhopadyay, R.P. and A.L. Chandra. 1990. Keratinase of Streptomycete. Indian J. Exp. Bio. 28, 575-577.
16 Oyeka, C.A. and H.C. Gugnani. 1997. Keratin degradation by Scytalidium species and Fusarium solani. Mycoses 41, 73-76.
17 Papadopoulose, M.C., A.R. El Boushy, and A.E. Roodbeen. 1985. The effect of varying autoclaving conditions and added sodium hydroxide on amino acid content and nitrogen characteristics of feather meal. J. Sci. Food Agric. Abstr. 36, 1219-1226.   DOI
18 Lee, N.H., Y.B. Kim, H.J. Kim, K.S. Seong, J.H. Rho, and C.K. Han. 1999. Effects of physiochemical treatment on the isolation of keratinaceous protein and amino acids of feather meal. Kor. J. Anim. Nutr. Feed. 23, 15-20.
19 Qin, L.M., S. Dekio, and J. Jidoi. 1992. Some biochemical characteristics of a partially purified extacellular keratinase from Trichophyton schoenleinii. Zentralbl. Bakteriol. 277, 236-244.   DOI
20 Korea Chicken Council. 2002. www.chicken.or.kr/chicken/data/ state.htm.
21 Lin, X., C.C. Lee, E.S. Casale, and J.C.H. Shih. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Microbiol. 58, 3271- 3275.
22 Baker, D.H., R.C. Blitenthal, K.P. Boebel, G.L. Czarnecki, L.L. Southern, and G.M. Willis. 1981. Protein-amino acid evalluation of steam-processed feather meal. Poult. Sci. 60, 1865-1872.   DOI
23 Marchisio, V.F., A. Fusconi, and S. Rigo. 1994. Keratinolysis and its morphological expression in hair digestion by airborne fungi. Mycopathologia 127, 103-115.   DOI   ScienceOn
24 Kim, J.M., W.J. Lim, and H.J. Suh. 2001. Feather-degrading Bacillus species from poultry waste. Process Biochem. 37, 287- 291.   DOI   ScienceOn
25 Kim, W.K. and P.H. Patterson. 2000. Nutritional value of enzymeor sodium hydroxide treated feathers from dead hens. Poult. Sci. 79, 528-534.   DOI
26 Kim, Y.B., J.B. Lee, K.S. Sung, and N.H. Lee. 1998. Effects of physical processing on protein content and pepsin digestibility of feather meals. Kor. J. Anim. Sci. 40, 103-110.
27 Ahmed, I., A. Yokota, A. Yamazoe, and T. Fujiwara. 2007. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Bacteriol. 57, 1117-1125.   DOI
28 Bockle, B., B. Galunski, and R. Muller. 1995. Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530. Appl. Environ. Microbiol. 61, 3705-3710.
29 Colette, M.H. and G.H. Michael. 1994. Bioconversion of waste keratins: wool and feathers. Conserv. Recyc. 11, 179-188.   DOI   ScienceOn
30 Chon, D.H., S.M. Kang, and T.J. Kwon. 2003. Purification and some properties of keratinolytic protease produced by Pseudomonas sp. KP-364. Kor. J. Microbiol. Biotechnol. 31, 224-229.   과학기술학회마을
31 Gupta, R. and P. Ramnani. 2006. Microbial keratinase and their prospective application: an overview. Appl. Microbiol. Biotechnol. 70, 21-33.   DOI   ScienceOn