Browse > Article

Expression of the lux Genes in Escherichia coli for the Basis of Development of Biosensor  

Cho, Mi-Mi (Department of Biochemistry, Chungnam National University)
Kim, Young-Doo (Department of Biochemistry, Chungnam National University)
Kang, Kyung-Sook (Department of Biochemistry, Chungnam National University)
Kim, Sook-Kyung (Center for Bioanalysis, Korea Research Institute of Standards and Science)
Yang, In-Chul (Center for Bioanalysis, Korea Research Institute of Standards and Science)
Park, Sang-Ryoul (Center for Bioanalysis, Korea Research Institute of Standards and Science)
Lee, Chan-Yong (Department of Biochemistry, Chungnam National University)
Publication Information
Korean Journal of Microbiology / v.45, no.4, 2009 , pp. 419-424 More about this Journal
Abstract
To provide the basis of biosensor based on the lux genes from bioluminescent bacteria of Photobacterium leiognathi and Vibrio harveyi, we test the expression of lux genes in several strains of Escherichia coli. The expression of the recombinant plasmid of PlXba.pT7-3, containing all lux genes requiring for light emission without adding substrate, in E. coli 43R was so strong to see the blue-green light in single colony as well as in the alginate immobilized cell. In addition, the light intensity was decreased by adding heavy metal ion such as cadmium and zinc ions. These result raise the possibility that a biosensor can be developed using the lux genes system.
Keywords
bioluminescence; biosensor; Photobacterium; Vibrio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boute, N., R. Jockers, and T. Issad. 2002. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 23, 351-354   DOI   ScienceOn
2 Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805   DOI   PUBMED
3 Herring, P.J. 1987. Systematic distribution of bioluminescence in living organisms. J. Biolumin. Chemilumin. 1, 147-163   DOI   PUBMED   ScienceOn
4 Lee, C.Y., R.B. Szittner, and E.A. Meighen. 1991. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Eur. J. Biochem. 201, 161-167   DOI   ScienceOn
5 Meighen, E.A. and P. Dunlop. 1993. Phylogical, biochemical, and genetic control of bacterial bioluminescence Adv. Microbiol. Physiol. 34, 1-67   DOI
6 Meighen, E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123-142   PUBMED   ScienceOn
7 Hoffman, R.M. 2004. Imaging tumor angiosis with fluorescent proteins. Apmis 112, 441-449   DOI   PUBMED   ScienceOn
8 Campbell, A.K. 1989. Living light: Biochemistry, function, and biomedical applications. Essays Biochem. 24, 41-76   PUBMED   ScienceOn
9 Min, J.J., S.M. Moon, Y.J. Hong, K.O. Cho, H.S. Bom, and H.E. Choy. 2005. Detection of solid tumor using light emitting E. coli. Molecular Imaging Biol. 7, 144
10 Van Dyk, T.K., W.R. Majarian, K.B. Konstantinov, R.M. Young, P.S. Dhurjati, and R.A. Larossa. 1994. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414-1420   PUBMED   ScienceOn
11 Wu, J.C., J.R. Tseng, and S.S. Gambhir. 2004. Molecular imaging of cardiovascular gene products. J. Nucl. Cadiol. 11, 491-505   DOI   ScienceOn
12 Marschner, P. and D.E. Crowely. 1996. Physicological activity of a bioluminescent Pseudomonas fluolescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (capsicum annuum L.). Soil Biol. Biochem. 28, 869-876   DOI   ScienceOn
13 Brennerova, M.V. and D.E. Crowely. 1994. Direct detection of rhizosphere-colonizing Pseudomonas sp. using an Escherichia coli rRNA promoter in a Tn7-lux system. FEMS Microbiol. Ecol. 14, 319-330   DOI   ScienceOn
14 Chung, K.H., H.S. Kim, E.S. Lee, S.J. Jung, J.G. Lee, E.K. Kim, and U.H. Chun. 1999. Response of Photobacterium phosphoreum to heavy metal. Kor. J. Biotechnol. Bioeng. 14, 342-350   과학기술학회마을   ScienceOn
15 Bliunin, K., S.G. Walker, J. Smith, and R.F.B. Turner. 1996. Characterization of in vivo reporter systems for gene expression and biosensor applications based on luxAB luciferase genes. Appl. Environ. Microbiol. 62, 2013-2021   PUBMED   ScienceOn
16 Lee, C.Y., D. O'Kane, and E.A. Meighen. 1994. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. 176, 2100-2104   DOI
17 Maturbutham, U., J.E. Thonnard, and C.G. Sayler. 1997. Bioluminescence induction response and survival of the bioreporter bacterium Pseudomonas fluorescens HK44 in nutrient-deprive conditions. Appl. Microbiol. Biotechnol. 47, 151-176   DOI
18 Lee, C.Y. and E.A. Meighen. 1992. The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem. Biophys. Res. Commun. 186, 690-997   DOI   ScienceOn
19 Yu, Y.A., S. Shabahang, T.M. Timiryasova, Q. Zhang, R. Beltz, I. Gentschev, W. Goebel, and A.A. Szalay. 2004. Visualization of tumors and metastases in live animals with bacteria and vaccina virus encoding light emitting proteins. Nature Biotechnol. 22, 313-320   DOI   ScienceOn
20 Boylan, M., J. Pelletier, and E.A. Meighen. 1989. Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. J. Biol. Chem. 264, 1915-1918   PUBMED