Browse > Article

Growth Suppression of Microcystis aeruginosa by Pseudomonas aeruginosa AJ1  

Kim, Sun-Jung (Department of Biotechnology, Graduate School of Kyonggi University)
Lee, Sang-Seob (Department of Biotechnology, Graduate School of Kyonggi University)
Publication Information
Korean Journal of Microbiology / v.45, no.4, 2009 , pp. 362-367 More about this Journal
Abstract
Among total 176 strains with antialgal effects isolated from So-ok stream in Korea, Pseudomonas aeruginosa AJ1 showed the highest removal efficiency for an algal species Microcystis aeruginosa (clear zone of diameter 50.0 mm on algal lawn after 20 days). The algal growth was suppressed even when the supernatant of AJ1 culture was applied, suggesting that extracellular substances are responsible for its antialgal activity. The removal activity of AJ1 was optimal under the following condition: pH 8, $30^{\circ}C$, and mannitol as a carbon source. The antialgal activity of AJ1 appeared to be dependent of the growth phase of M. aeruginosa, i.e., the highest at the early phase, but not its own phase. As expected, the algicidal effect was improved as the amount of the treated supernatant was increased; the highest removal efficiency (80.3%) was achieved when 40 ml/L of the supernatant was used. Interestingly, however, the removal rate was opposite. The highest removal rate ($8.2{\mu}g$ chl-a/ml supernatant/day) was achieved when low concentration (10 ml/L) was applied. These results suggest that P. aeruginosa AJ1 is a promising biological agent to control the problematic algal bloom.
Keywords
antialgal bacteria; M. aeruginosa; P. aeruginosa;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 박혜경. 2007. 수자원 관리를 위한 조류 분석법. 대한환경공학회지 29, 593-609   과학기술학회마을   ScienceOn
2 장은희, 김정동, 한명수. 2003. 남조류 분해세균 HY0210-AK1의 분리와 특성 및 Anabaena cylindrical 분해 활성. 한국환경생물학회 21, 194-202   과학기술학회마을   ScienceOn
3 APHA. 2000. Standard methods of the examination of water and wastewater, 20th edition. American Public Health Association, American Water Works Association, Washington, D.C., USA
4 Berger, P.S., J. Rho, and H.B. Gunner. 1979. Bacterial suppression of Chlorella by hydroxylamine production. Water Res. 13, 267-273   DOI   ScienceOn
5 Rinehart, K.L., M. Namikoshi, and B.W. Choi. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 6, 159-176   DOI   ScienceOn
6 Shi, S., Y. Liu, Y. Shen, G. Li, and D. Li. 2006. Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol. Control. 39, 345-351   DOI   ScienceOn
7 Yamamoto, Y., S. Niizuma, N. Kuroda, and M. Sakamoto. 1993. Occurrence of heterotrophic bacteria causing lysis of cyanobacteria in a eutrophic lake. J. Phycol. 41, 215-220
8 Atlas, R.M. 2004. Handbook of microbiological media, 3rd ed., p. 1,500. CRC press
9 Dakhama, A., J. Noüe, and M.C. Lavoie. 1993. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J. Appl. Phycol. 5, 297-306   DOI   ScienceOn
10 Kim, J.D. and C.G. Lee. 2007. Purification and characterization of extracellular β-glucosidase from Sinorhizobium kostiense AFK-13 and its algal lytic effect on Anabaena flos-aquae. J. Microbiol. Biotechnol. 17, 745-752   과학기술학회마을   PUBMED   ScienceOn
11 Provasoli, L., J.J.A. McLaughlin, and M.R. Droop. 1957. The development of artificial media for marine algae. Arch. Mikrobiol. 25, 392-428   DOI   PUBMED
12 Choi, H.J., B.H. Kim, J.D. Kim, and M.S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol. Control. 33, 335-343   DOI   ScienceOn
13 Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J. Appl. Phycol. 10, 391-397   DOI   ScienceOn
14 Kodani, S., A. Imoto, A. Mitsutani, and M. Murakami. 2002. Isolation and identification of the antialgal compound, harmane (1-methyl-$\beta$-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14, 109-114   DOI   ScienceOn
15 Slater, G.P. and V.C. Blok. 1983. Volatile compounds of the Cyanophyceae. A review. Water Sci. Technol. 15, 181-190
16 Kim, C.H., Y.K. Choi, and B.R. Min. 1997. Lysis of Anabaena cylindrical (Cyanobacterium) cell wall by extracellular enzymes of Moraxella sp. CK-1. Kor. J. Environ. Biol. 15, 89-97
17 Brenner, D.J., N.R. Krieg, and J.T. Staley. 2005. Bergey's manual of systematic bacteriology, pp. 354-358. 2nd ed., The Williams and Wilkins Co., Baltimore, Maryland, USA
18 Kim, J.D. and M.S. Han. 2004. Characterization of a novel algalytic bacterium, Acidovorax temperans AK-05, isolated from an eutrophic lake for degradation of Anabaena cylindrical. Kor. J. Limnol. 37, 241-247   과학기술학회마을   ScienceOn
19 Nakamura, N., K. Nakano, N. Sugiura, and M. Matsumura. 2003. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a eutrophic lake. J. Biosci. Bioeng. 95, 179-184   DOI   PUBMED   ScienceOn
20 Carmichael, W.W. 2001. Health effects of toxin-producing Cyanobacteria: "The CyanoHABs". Hum. Ecol. Risk Assess. 7, 1393-1407   DOI   ScienceOn
21 Yu, T.S. 2004. Optimization of culture conditions for the production of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans. Kor. J. Life Sci. 14, 608-613   과학기술학회마을   DOI   ScienceOn
22 이태형, 임평옥, 이용억. 2007. Paenibacillus sp. DG-22에서의 $\beta$-xylosidase 생합성 조절. 생명과학회지 17, 407-411   과학기술학회마을   DOI   ScienceOn
23 Kim, J.D. and M.S. Han. 2003. Identification of alga-lytic bacterium AK-07 and its enzyme activities associated with degradability of cyanobacterium Anabaena cylindrical. Kor. J. Limnol. 36, 108-116   과학기술학회마을   ScienceOn
24 Watanabe, M.F., K.I. Harada, W.W. Carmichael, and H.I. Fujiki. 1995. Toxic microcystis. CRC Press 103-148
25 Mu, R.M., Z.Q. Fan, H.Y. Pei, X.L. Yuan, S.X. Liu, and X.R. Wang. 2007. Isolation and algae-lysing characteristics of the algicidal bacterium B5. J. Environ. Sci. (China) 19, 1336-1340   DOI   ScienceOn