Browse > Article

Development of Trans-Splicing Aptazyme Which Can Specifically Modify Hepatitis C Virus Genome  

Kim, Ju-Hyun (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
Lee, Chang-Ho (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
Jang, Sun-Young (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
Lee, Seong-Wook (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Korean Journal of Microbiology / v.44, no.3, 2008 , pp. 186-192 More about this Journal
Abstract
For the development of specific and effective basic genetic materials to inhibit replication of hepatitis C virus (HCV), HCV genome-targeting trans-splicing aptazyme, which activity is allosterically regulated by a specific ligand, was developed. The aptazyme was designed to be comprised of sequence of RNA aptamer to the ligand, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding the ligand to the aptamer, and trans-splicing ribozyme targeting +199 nt of HCV IRES. Especially, when the aptamer and the communication module was inserted at both P6 and P8 catalytic domain of the specific ribozyme, allosteric activity of the aptazyme was the most induced. The aptazyme was shown to induce activity of trans-splicing reaction specifically and efficiently only in the presence of the specific ligand, but neither in the absence of any ligand nor in the presence of control ligand. This aptazyme can be used as a specific and effective genetic agent against HCV, and a tool for the isolation of anti-HCV lead compounds.
Keywords
aptazyme; communication module; hepatitis C virus; RNA aptamer; trans-splicing ribozyme;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Hino, K., S. Sainokami, K. Shimoda, S. Iino, Y. Wang, H. Okamoto, Y. Miyakawa, and M. Mayumi. 1994. Genotypes and titers of hepatitis C virus for predicting response to interferon in patients with chronic hepatitis C. J. Med. Virol. 42, 299-305   DOI   ScienceOn
2 Macejak, D.G., K.L. Jensen, S.F. Jamison, K. Domenico, E.C. Roberts, N. Chaudhary, I. Von Carlowitz, L. Bellon, M.J. Tong, A. Conrad, P.A. Pavco, and L.M. Blatt. 2000. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776   DOI   ScienceOn
3 Pagliaro, L., A. Craxi, C. Cammaa, F. Tine, V. Di Marco, L. Iacono, and P. Almasio. 1994. Interferon-alpha for chronic hepatitis C: an analysis of pretreatment clinical predictors of response. Hepatology 19, 820-828
4 Ryu, K.J. and S.W. Lee. 2004. Comparative analysis of intracellular trans-splicing ribozyme activity against hepatitis C virus internal ribosome entry site. J. Microbiol. 42, 361-364   과학기술학회마을
5 Hahm, B., D.S. Han, S.H. Back, O.K. Song, M.J. Cho, C.J. Kim, K. Shimotohno, and S.K. Jang. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. 1995. J. Virol. 69, 2534-2539   PUBMED
6 Kolykhalov, A.A., K. Mihalik, S.M. Feinstone, and C.M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J. Virol. 74, 2046-2051   DOI
7 Anwar, A., N. Ali, R. Tanveer, and A. Siddiqui. 2000. Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J. Biol. Chem. 275, 34231-34235   DOI   ScienceOn
8 Chevalier, C., A. Saulnier, Y. Benureau, D. Flechet, D. Delgrange, F. Colbere-Garapin, C. Wychowski, and A. Martin. 2007. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol. Ther. 15, 1452-1462   DOI
9 Kapadia, S.B., A. Brideau-Andersen, and F.V. Chisari. 2003. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 2014-2018
10 Biroccio, A., J. Hamm, I. Incitti, R. De Francesco, and L. Tomei. 2002. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76, 3688-3696   DOI
11 Penchovsky, R. and R.R. Breaker. 2005. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23, 1424-1433   DOI   ScienceOn
12 Pley, H.W., K.M. Flaherty, and D.B. McKay. 1994. model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111-113   DOI   ScienceOn
13 Kuo, G., Q.L. Choo, H.J. Alter, G.L. Gitnick, A.G. Redeker, R.H. Purcell, T. Miyamura, J.L. Dienstag, M.J. Alter, and C.E. Stevens. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364   DOI
14 Jenison, R.D., S.C. Gill, A. Pardi, and B. Polisky. 1994. High-resolution molecular discrimination by RNA. Science 263, 1425-1429   DOI
15 Hwang, B., J.S. Cho, H.J. Yeo, J.H. Kim, K.M. Chung, K. Han, S.K. Jang, and S.W. Lee. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277-1290   DOI   ScienceOn
16 Kertsburg, A. and G.A. Soukup. 2002. A versitile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30, 4599-4606   DOI   ScienceOn
17 Araki, M., Y. Okuno, Y. Hara, and Y. Sugiura. 1998. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379-3384   DOI
18 Penin, F., J. Dubuisson, F.A. Rey, D. Moradpour, and J.M. Pawlotsky. 2004. Structural biology of hepatitis C virus. Hepatology 39, 5-19   DOI   ScienceOn
19 Saito, I., T. Miyamura, A. Ohbayashi, H. Harada, T. Katayama, S. Kikuchi, Y. Watanabe, S. Koi, M. Onji, Y. Ohta, Q. Choo, M. Houghton, and G. Kuo. 1990. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 87, 6547-6549
20 Hermann, T. and D.J. Patel. 2000. Adaptive recognition by nucleic acid aptamers. Science 287, 820-825   DOI   ScienceOn
21 Ryu, K.J., J.H. Kim, and S.W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386-395   DOI   ScienceOn
22 Ali, N. and A. Siddiqui. 1995. Interaction of polypyrimidine tractbinding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. Virol. 69, 6367-6375   PUBMED
23 Choo, Q.L., G. Kuo, A.J. Weiner, L.R. Overby, D.W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362   DOI