Browse > Article
http://dx.doi.org/10.7582/GGE.2020.23.1.050

The Closed-form Expressions of Magnetic Field Due to a Right Cylinder  

Rim, Hyoungrea (Department of Earth Science Education, Pusan National University)
Eom, Jooyoung (Department of Earth Science Education, Kyungpook National University)
Publication Information
Geophysics and Geophysical Exploration / v.23, no.1, 2020 , pp. 50-54 More about this Journal
Abstract
Herein, the closed-form expressions of the magnetic field due to an axially symmetric body such as a right cylinder, are derived. The magnetic field due to a right cylinder is converted from the gravity gradient tensor using Poisson's relation; the magnetic field induced by a constant magnetization can be obtained from the gravity gradient tensor with a constant density. Because of the axial symmetry of the cylinder, the expressions of gravity gradient tensor are derived in cylindrical coordinate and then transformed into Cartesian coordinates for the three components of the magnetic field using an arbitrary magnetization direction.
Keywords
magnetic; gravity gradient tensor; Poisson's relation; cylinder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arfken, G. B., Weber H. J., and Harris, F. E., 2012, Mathematical methods for physicists 7th ed., Elsevier.
2 Blum, V. J., 1945, The magnetic field over igneous pipes, Geophysics, 10(3), 368-375.   DOI
3 Byrd, P. F., and Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag.
4 Carlson, B. C., and Notis, E. M., 1981, Algorithm 577: Algorithm for incomplete elliptic integrals [S21], AMC. Trans. Math. Softw., 7(3), 389-403.
5 Damiata, B. N., and Lee, T. C., 2002, Gravitational attraction of solids of revolution. Part 1: Vertical circular cylinder with radial variation of density, J. Appl. Geophy., 50(3), 333-349.   DOI
6 Eason, G., Noble, B., and Sneddon, I. N., 1955, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Proc. R. Soc. Lond. A. Math. Phys. Sci., 247(935), 529-551.
7 Nabighian, M., 1962, The gravitational attraction of a right vertical circular cylinder at points external to it, Geofisica pura e applicata, 53(1), 45-51.   DOI
8 Nettleton, L. L., 1942, Gravity and magnetic calculations, Geophysics, 7(3), 293-310.   DOI
9 Rim, H., and Li, Y., 2016, Gravity gradient tensor due to a cylinder, Geophysics, 81(4), G59-G66.   DOI
10 Sarma, B. S. P., Verma, B. K., and Satyanarayana, S. V., 1999, Magnetic mapping of Majhgawan diamond pipe of central India, Geophysics, 64(6), 1735-1739.   DOI
11 Singh, S. K., 1977, Gravitational attraction of a vertical right circular cylinder, Geophys. J. Int., 50(1), 243-246.   DOI
12 Singh, S. K., and Sabina, F. J., 1978, Magnetic anomaly due to a vertical right circular cylinder with arbitrary polarization, Geophysics, 43(1), 173-178.   DOI
13 Singh, S. K., and Sabina, F. J., 1978, To: "Magnetic anomaly due to a vertical right circular cylinder with arbitrary polarization", by S. K. Singh and F. J. Sabina, Geophysics, v.43, p.173-178 (February, 1978), Geophysics, 43(6), 1312p.   DOI
14 Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press.
15 Carlson, B. C., 1995, Numerical computation of real and complex elliptic integrals, Numer. Algorithms., 10(1), 13-26.   DOI