Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.077

Electric-field Assisted Photochemical Metal Organic Deposition for Forming-less Resistive Switching Device  

Kim, Su-Min (Department of Materials Science & Engineering, Kangwon National University)
Lee, Hong-Sub (Department of Materials Science & Engineering, Kangwon National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 77-81 More about this Journal
Abstract
Resistive RAM (ReRAM) is a strong candidate for the next-generation nonvolatile memories which use the resistive switching characteristic of transition metal oxides. The resistive switching behaviors originate from the redistribution of oxygen vacancies inside of the oxide film by applied programming voltage. Therefore, controlling the oxygen vacancy inside transition metal oxide film is most important to obtain and control the resistive switching characteristic. In this study, we introduced an applying electric field into photochemical metal-organic deposition (PMOD) process to control the oxidation state of metal oxide thin film during the photochemical reaction by UV exposure. As a result, the surface oxidation state of FeOx film could be successfully controlled by the electric field-assisted PMOD (EFAPMOD), and the controlled oxidation states were confirmed by x-ray photoelectron spectroscopy (XPS) I-V characteristic. And the resistive switching characteristics with the oxidation-state of the surface region could be controlled effectively by adjusting an electric field during EFAPMOD process.
Keywords
Iron oxide; Resistive switching; ReRAM; Photochemical metal-organic deposition; Electric field assisted;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, "GeSbTe deposition for the PRAM application", Appl. Surf. Sci., 253(8), 3969 (2007).   DOI
2 Z. Li and S. Zhang, "Domain-wall dynamics driven by adiabatic spin-transfer torques", Phys. Rev. B, 70(2), 024417 (2004).   DOI
3 H.-S. Lee, "The Latest Trends and Issues of Anion-based Memristor", J. Microelectron. Packag. Soc., 26(1), 1 (2019).   DOI
4 S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, "Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures", Science, 276(5310), 238 (1997).   DOI
5 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxide: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., 257(7), 2717 (2001).   DOI
6 O. Auciello, J. F. Scott, and R. Ramesh, "The Physics of Ferroelectric Memories", Phy. Today, 51(7), 22 (1998).   DOI
7 H. H. park, H. H. park, and R. H. Hill, "Direct-patterning of SnO2 thin film by photochemical metal-organic deposition", Sens. Actuator A-Phys., 133(2), 429 (2006).
8 S. Xue, W. Ousi-Benomar, and R. A. Lessard, "α-Fe2O3 thin films prepared by metalorganic deposition (MOD) form Fe(III) 2-ethylhexanoate", Thin Solid Films, 250(1), 194 (1994).   DOI
9 P. Pourghahramani and E. Forssberg, "Microstructure characterization of mechanically activated hematite using XRD line broadening", Int. J. Miner. Process., 79(2), 106 (2006).   DOI
10 G. F. Moreira, E. R. Pecanha, M. B. M. Monte, L. S. L. Filo, and F. Stavale, "XPS study on the mechanism of starch-hematite surface chemical complexation", Miner. Eng., 110, 96 (2017).   DOI
11 D. Wilson and M. A. Langell, "XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature", Appl. Surf. Sci., 303, 6 (2014).   DOI
12 A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. Mclntyre, "Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds", Surf. Interface Anal., 36(12), 1564 (2004).   DOI
13 J. D. Kim, Y. J. Baek, Y. J. Choi, C. J. Kang, H. H. Lee, H. M. Kim, K. B. Kim, and T. S. Yoon. "Investigation of analog memristive switching of iron oxide nanoparticle assembly between Pt electrode", J. Appl. Phys., 114(22), 224505 (2013).   DOI
14 A. Sawa, "Resistive switching in transition metal oxide", Mater. Today, 11(6), 28 (2008).   DOI
15 L. W. Feng, C. Y. Chang, Y. F. Chang, T. C. Chang, and S. Y. Wang. "Improvement of resistance switching characteristics in a thin FeOx transition layer of TiN/SiO2/FeOx/FePt structure by rapid annealing", Appl. Phys. Lett., 96(22), 222108 (2010).   DOI
16 R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater., 21(25-26), 2632 (2009).   DOI
17 Y.-K. Hwang, W.-Y. Lee, S.-J. Lee, and H.-S. Lee, "Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition", J. Microelectron. Packag. Soc., 27(1), 25 (2020).