Browse > Article
http://dx.doi.org/10.6117/kmeps.2015.22.1.055

A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain  

Lee, T.W. (Department of Materials Science and Engineering, Yonsei University)
Lee, H.S. (Department of Materials Science and Engineering, Yonsei University)
Park, H.H. (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.22, no.1, 2015 , pp. 55-61 More about this Journal
Abstract
Stretchable electrode materials are focused to apply to flexible device such as e-skin and wearable computer. Used as a flexible electrode, increase in electrical resistance should be minimalized under physical strain as bend, stretch and twist. Carbon black is one of candidates, for it has many advantages of low cost, simple processing, and especially reduction in resistivity with stretching. However electrical conductivity of carbon black is relatively low to be used for electrodes. Instead graphene is one of the promising electronic materials which have great electrical conductivity and flexibility. So it is expected that graphene added carbon black may be proper to be used for stretchable electrode. In this study, under stretching electrical property of graphene added carbon black composite electrode was investigated. Mechanical stretching induced cracks in electrode which means breakage of conductive path. However stretching induced aligned graphene enhanced connectivity of carbon fillers and maintained conductive network. Above all, electronic structure of carbon electrode was changed to conduct electrons effectively under stretching by adding graphene. In conclusion, an addition of graphene gives potential of carbon black composite as a stretchable electrode.
Keywords
Graphene; stretchable electrode; carbon black; carbon composites; electrical property;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Park, S. Wang, M. Li, C. Ahn, J. K. Hyun and D. S. Kim, "Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors", Nat. Commun., 3, 916 (2012).   DOI   ScienceOn
2 J. H. Kim, M. W. Chon and S. H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices", J. Microelectron. Packag. Soc., 21(2), 1 (2014).   DOI
3 T. W. Lee and H. H. Park, "The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode", J. Microelectron. Packag. Soc., 21(4), 77 (2014).   DOI
4 J. A. Rogers, T. Someya and Y. Huang, "Materials and Mechanics for Stretchable Electronics", Science, 327, 1603 (2010).   DOI   ScienceOn
5 S. Rosset and H. R. Shea, "Flexible and stretchable electrodes for dielectric elastomer actuators", Appl. Phys. A, 110, 281 (2013).   DOI
6 A. Chortos and Z. Bao, "Skin-inspired electronic devices", Mater Today, 17, 321 (2014).   DOI
7 J. Lee, J. Wu, M. Shi, J. Yoon, S. I. Park, M. Li, Z. Liu, Y. Huang and J. A. Rogers, "Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage", Adv. Mater., 23, 986 (2011).   DOI   ScienceOn
8 D. H. Kim, J. Song, W. M. Choi, H. S. Kim, R. H. Kim, Z. Liu, Y. Y. Huang, K. C. Hwang, Y. Zhang and J. A. Rogers, "Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations", Proc. Natl. Acad. Sci., 105(48), 18675 (2008).   DOI   ScienceOn
9 P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 24(25), 3326 (2012).   DOI   ScienceOn
10 T. A. Kim, H. S. Kim, S. S. Lee and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012).   DOI
11 N. C. Das, T. K. Chaki and D. Khastgir, "Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites", Polym. Int., 51(2), 156 (2002).   DOI
12 L. Flandin, A. Hiltner and E. Baer, "Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer", Polymer, 42(2), 827 (2001).   DOI
13 Y. Sun, H. D. Bao, Z. X. Guo and J. Yu, "Modeling of the Electrical Percolation of Mixed Carbon Fillers in Polymer-Based Composites", Macromolecules, 42(1), 459 (2009).   DOI
14 T. W. Lee, Ch. S. Park and H. H. Park, "The effect of ballmilling on the dispersion of carbon nanotubes: the electrical conductivity of carbon nanotubes-incorporated ZnO", J. Ceram. Soc. Jpn., 122(8), 1 (2014).   DOI
15 A. K. Geim and K. S. Novoselov, "The rise of graphene", 6, 183 (2007).   DOI
16 M. Wen, X. Sun, L. Su, J. Shen, J. Li and S. Guo, "The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion", Polymer, 53(7), 1602 (2012).   DOI
17 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim and K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457(7230), 706 (2009).   DOI
18 L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel and N. E. Bounia, "Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers", Journal of Polymer Science Part B: Polymer Physics, 46(18), 1939 (2008).   DOI
19 P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong and K. H. Nam, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 24(25), 3326 (2012).   DOI   ScienceOn
20 L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76(6), 894 (2000).   DOI
21 S. P. Rwei, F. H. Ku and K. C. Cheng, "Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies", Colloid and Polymer Science, 280(12), 1110 (2002).   DOI
22 K. Yamaguchi, J. J. C. Busfield and A. G. Thomas, "Electrical and mechanical behavior of filled elastomers. I. The effect of strain", Journal of Polymer Science Part B: Polymer Physics, 41(17), 2079 (2003).   DOI
23 S. Stasio and A. Braun, "Comparative NEXAFS Study on Soot Obtained from an Ethylene/Air Flame, a Diesel Engine, and Graphite", Energy & Fuels, 20(1), 187 (2006).   DOI
24 Y. Fukahori and W. Seki, "Stress analysis of elastomeric materials at large extensions using the finite element method", J. Mater. Sci., 29(10), 2767 (1994).   DOI
25 D. Pacile, M. Papagno, A. Fraile Rodriguez, M. Grioni, L. Papagno, C. O. Girit, J. C. Meyer, G. E. Begtrup and A. Zettl, "Near-Edge X-Ray Absorption Fine-Structure Investigation of Graphene", PRL., 101, 066806 (2008).   DOI
26 N. E. Nickles, "The role of bandgap in the secondary electron emission of small bandgap semiconductors: Studies of graphitic carbon", Utah State University, UMI Dissertations Publishing (2002).