Browse > Article
http://dx.doi.org/10.6117/kmeps.2012.19.2.061

Synthesis of Bi Nanoparticles Using a Modified Polyol Method  

Cho, Hye-Jung (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.19, no.2, 2012 , pp. 61-66 More about this Journal
Abstract
Bismuth(Bi) nanoparticles were synthesized at room temperature by a modified polyol process using bismuth(III) carbonate basic as precursor. In addition, some characteristics of the synthesis with respect to the exchange of a capping agent/surface stabilizer and solvent type were observed. When polyvinylpyrroldone was added, the finest Bi nanoparticles were synthesized in diethylene glycol(DEG), while the coarsest nanoparticles were formed in polyethylene glycol(PEG). The particle size immediately after synthesis was proportionate to final particle size which was determined by particle growth through coalescence and aggregation during drying. As a result, the finest Bi particles with the diameter range of several tens of nanometers - 300 nm were finally obtained in DEG. Regardless of the type of capping agent/surface stabilizer, extensive coalescence and aggregation behavior occurred in PEG, resulting in final products agglomerated with coarse particles.
Keywords
Bi nanoparticles; reduction synthesis; modified polyol synthesis; capping agent; particle size;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Wang, X. Wang, Q. Peng and Y. Li, "Synthesis and Characterization of Bismuth Single-Crystalline Nanowires and Nanospheres", Inorg. Chem., 43, 7552 (2004).   DOI
2 Y. W. Wang, B. H. Hong and K. S. Kim, "Size Control of Semimetal Bismuth Nanoparticles and the UV-Visible and IR Absorption Spectra", J. Phys. Chem. B, 109, 7067 (2005).   DOI
3 Y. Wang, J. Zhao, X. Zhao, L. Tang, Y. Li and Z. Wang, "A Facile Water-Based Process for Preparation of Stabilized Bi Nanoparticles", Mater. Res. Bull., 44, 220 (2009).   DOI
4 M. Cachile and A. M. Cazabat, "Spontaneous Spreading of Surfactant Solutions on Hydrophilic Surfaces: $C_{n}E_{m}$ in Ethylene and Diethylene Glycol", Langmuir, 15, 1515 (1999).   DOI
5 F. Comelli and S. Ottani, "Densities, Viscosities, Refractive Indices, and Excess Molar Enthalpies of Binary Mixtures Containing Poly(ethylene glycol) 200 and 400 + Dimethoxymethane and + 1,2-Dimethoxyethane at 298.15 K", J. Chem. Eng. Data, 47, 1226 (2002).   DOI
6 S. Park, K. Kang, W. Q. Han and T. Vogt, "Synthesis and Characterization of Bi Nanorods and Superconducting NiBi Particles", J. Alloy Comp., 400, 88 (2005).   DOI
7 G. Bhimarasetti and M. K. Sunkara, "Synthesis of Sub-20-nm-Sized Bismuth 1-D Structures Using Gallium-Bismuth Systems", J. Phys. Chem. B, 109, 16219 (2005).   DOI
8 Y. -N. Choi, M. -Y. Kim and T. -S. Oh, "Thermoelectric Properties of Bi-Te Thin Films Processed by Coevaporation", J. Microelectron. Packag. Soc., 17(4), 89 (2010).
9 M. R. Roh, J. Y. Choi and T. S. Oh, "Thermoelectric Properties of the Hot-pressed $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ with Dispersion of Tungsten Powders", J. Microelectron. Packag. Soc., 18(4), 55 (2011).
10 J. L. Costa-Krämer, N. Garcia and H. Olin, "Conductance Quantization in Bismuth Nanowires at 4 K", Phys. Rev. Lett., 78, 4990 (1997).   DOI
11 K. Liu, C. L. Chien, P. C. Searson and K. Yu-Zhang, "Structural and Magneto-Transport Properties of Electrodeposited Bismuth Nanowires", Appl. Phys. Lett., 73, 1436 (1998).   DOI
12 J. Heremans and C. M. Thrush, "Thermoelectric Power of Bismuth Nanowires", Phys. ReV. B, 59, 12579 (1999).   DOI
13 M. R. Black, Y.-M. Lin, S. B. Cronin, O. Rabin and M. S. Dresselhaus, "Infrared Absorption in Bismuth Nanowires Resulting from Quantum Confinement", Phys. ReV. B, 65, 195417 (2002).   DOI
14 J. -H. Kim, C. -Y Hyun and J. -H. Lee, "Interfacial Reaction Characteristics of a Bi-20Sb-10Cu-0.3Ni Pb-free Solder Alloy on Cu Pad", J. Microelectron. Packag. Soc., 17(1), 1 (2010).
15 M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin and M. S. Dresselhaus, "Optical Absorption from an Indirect Transition in Bismuth Nanowires", Phys. ReV. B, 68, 235417 (2003).   DOI
16 A. Nikolaeva, D. Gitsu, T. Huber and L. Konopko, "Confinement Effect in Single Nanowires Based on Bi", Phys. B, 346-347, 282 (2004).   DOI
17 Y. Zhao, Z. Zhang and H. Danga, "A Simple Way to Prepare Bismuth Nanoparticles", Mater. Lett., 58, 790 (2004).   DOI
18 P. Chiu and I. Shih, "A Study of the Size Effect on the Temperature- Dependent Resistivity of Bismuth Nanowires with Rectangular Cross-Sections", Nanotechnology, 15, 1489 (2004).   DOI
19 O. Rohr, "Bismuth-The New Ecologically Green Metal for Modern Lubricating Engineering", Ind. Lubr. Tribol., 54, 153 (2002).   DOI
20 J. P. Heremans, C. M. Thrush, D. T. Morelli and M. C. Wu, "Thermoelectric Power of Bismuth Nanocomposites", Phys. Rev. Lett., 88, 216801 (2002).   DOI   ScienceOn